Wireshark Developer's Guide
for Wireshark 1.9

Ulf Lamping,

Wireshark Developer's Guide: for Wireshark

1.9

by UIf Lamping
Copyright © 2004-2012 UIf Lamping

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU General Public License, Version 2 or any
later version published by the Free Software Foundation.

All logos and trademarks in this document are property of their respective owner.

I o= Y] o ST PR vii
2. Who should read this dOCUMENT?uuiiiiiiiieieiii e vii
3. ACKNOWIEAGEMENLSiiiiicii e e e e e e e e e e e et e e e eaas Vii
4. ADOUL thiS AOCUMENLceiiiiieeiiii e e e e e e e s Vii
5. Where to get the latest copy of this documeNnt?...........ccoevvieiiiiiiiiin e, viii
6. Providing feedback about this documentcoooiiiiiiii i viii
I. Wireshark Build ENVIFONMENLuuiiiiiiiieieiiise et e e e e e et e e e e e enanns 1
IO 1 oo [0 1o P 2
0 1 1 oo 11 o o PP 2

1.2, What iSWITeShark?ovvniiiiii e 2

1.3. Platforms Wireshark runS ONoviviiiiiiiiiiiii e 2
0 1 T 1 G PPN 2

0 3 011 G 2

1.3.3. Microsoft WINGOWSuiiiiiiiiiiiiin e 3

1.4. Development and maintenance of Wiresharkccoovviiiiiiiiiiii i, 3
1.4.1. Programming language(S) USEdcc.oveviiieiiiiiiiii e eei e, 4

1.4.2. Open SOUrCE SOftWEIEcvvviiiii e e e e e 4

1.5. Releases and distribDULIONSveiiiiiiiiiiii e 4
1.5.1. Binary distribUtioNnSccuuiiiiiieiiii e 4

1.5.2. Source code distribULIONScuuuieiiiiiieiiiie e e 5

1.6. Automated Builds (BUIlADOL)cccuviiiiiiiiiicii e 5
T Y0 1Y | - o = PN 5

1.6.2. What does the Buildbot dO?cocuviiiiiiiiiiiiiiiiieec e 6

1.7. Reporting problems and getting helpoovvniiiiii e 6
17,0 WEDSITE Lo 6

L7.2 WK o e e e 6

L 7.3 FAQ i 6

L1.7.4. OtNEI SOUMCES ...evvuieieiiii e et e ettt e et e e et e e e e et e e e eatanaeeees 7

175, Maling LIStS oovuiiiiiciii e e e e e e eea 7

1.7.6. Bug database (BUGZilla)c.covuiiiiiii e 8

1.7.7. Reporting Problems ..o 8

1.7.8. Reporting Crashes on UNIX/Linux platforms..........ccoceoeveiiiieiineeinns 8

1.7.9. Reporting Crashes on Windows platforms............ccooeeviieiiiiiiiineeinnns 9

A @ U T s = 11 o N 10
2.1 UNEX: INSEEIAON .evviiciiii et 10

2.2. Win32: Step-by-Step GUIAEccvviiiiiie e e 10
2.2.1. Install Microsoft C compiler and Platform SDKccoceviiviiinnennnnn. 10

2.2.2. INStaAll CYQWIN oovniiii e 11

223, Instal PYythOn ...ccoeiiiic e 11

2.2.4, Install SUDVErsion CHENtccuuuiiiiiiiiiieiiiiee e 11

2.2.5. Install and Prepare SOUICESccuuevieieiiiieeie e e e e e e e e e e e 12

2.2.6. Prepare CMA.EXEu.cviiii e e e 12

2.2.7. Verify installed t00IScovviiiiic e 13

228, Install Librariesoouiiiiiiiiicie 13

2.2.9. DiStCIEAN SOUICES ...vviiiiiiiieeiiii et e et e e 14

2.2.10. BUIld WIr€Sharkveeiiiiiiiiiiiii e 14

2.2.11. Debug Environment Setup (XXX) ..ovvviiiiiiieiiiiciii e eaeens 14

2.2.12. Optional; Create User's and Developer's Guideccoeeevvvveennnnnnnn. 14

2.2.13. Optional: Create a Wireshark Installercccoooovveiiiiiiiniiinennnnn, 14

3. Work with the Wireshark SOUICESuiiiiiiiiiiiiiii e 16
130 I [oo [0 1o SRS 16

3.2. The Wireshark SUBVErSion repOSItOrYocvvviiiiiieeiii e 16
3.2.1. The web interface to the Subversion repositoryc.cccevevvvieeinnnn. 17

3.3. Obtain the Wireshark SOUICESccuuuiiiiiiiiieiiiiee e 17
3.3.1. ANONYMOUS SUBVErSION GCCESScvvuiiiiieeiieeeieeeie e e e e e e e eeennas 17

3.3.2. Anonymous Subversion web interfacecoooveiiiiiiiiiiniiee e, 18

3.3.3. Buildbot Snapshotscocvviiiiiiiii 18

Wireshark Developer's Guide

3.3.4. REIEESEU SOUMCESevvvnieieiiii ettt e e et e e eeees 18

3.4. Update the Wireshark SOUICEScuuieiiiiiiiiiiiii e 18
3.4.1. ... with Anonymous SUDVErSION aCCESSuoevvvieiiinieiieeeiieeeieeeannn 19
342, .. fromM ZIPFIlES oo 19

3.5, BUIld WIESNarkcvvvvviiiiii it e e e e s 19
350 T U 1 P 19
3.5.2. WINSB2 NALIVE .oevveviiiie s e eeeeieiie s e e et s s e e e e e e e e s aeeeaeeannee 20

3.6. Run generated WIreSharkc.veiiiiiiiiieii i 20
G330 I U T 1 T 20
3.6.2. WIN32 NALIVE .cevvvvviiiies e e e eee e e e e e e s e e e e e eeaaaen e s e e e eaeeannen 20

3.7. Debug your generated Wiresharkcooevuiiiiiiiiiii e 21
G %0 T U T 1 T 1 21
3.7.2. WIN32 NALIVE .eeeeeveeiie e e eeeee e e et s s e e e e e e et e s e e e e aeeannen 21

3.8. Make changes to the Wireshark SOUICEScc.oveviieiiiiiiiii e, 21
3.9. Contribute Your ChaNGESiiei e 21
3.9.1. What isadiff file (@patCh)?cccovviiiiiii e, 22

3.9.2. Generate @ PatChoovvnieii i 22
3.9.3. Some tips for agood PatChccceuiiiiiiiiii e 24
3.9.4. Code REQUITEMENESiiicciii e e s 24
3.9.5. Sending your patch for inCluSIoNcooevieeiiiiiic e, 25

3.10. Apply a patch from SOMEONE ElSEcccvuiiiiieiie e 26
3.10.1. USING PACH ...cvveiiice e 26

3.11. Add a new file to the SUbVErsion repoSItoryoovevvieviineeiiniecie e, 26
3.12. BiNary PaCKagiNguueeeneeiuieeiieeeiie et e e e e e s e e e et e e et e e et e e e e e e aanas 27
3.12.1. Debian; .deb packagesccuvviiiiiiiiiicie e 27
3.12.2. Red Hat: .rpm PaCKagES .. .cvuiiiiieiie e 27
3.12.3. MAC OS X: .dmMQ PackageSoevvuieiiieiiiieiie e eee e 28
3.12.4. Win32: NSIS .eXe inStallerovvieiiiiiiiiiiiiie e 28

R oo B = = ool 29
g I g1 o [F o ' o PP 29
4.2. WiIN32: CYQWIN .eiiieiiiii e ettt e s e e e e e et s e e e e e e e et e s e e e aeeaaesaan s 29
4.2.1. Add/Update/Remove Cygwin PackagesSc.coovvvvveiiiieiiiieiiineeiis 30

4.3. GNU compiler toolchain (UNIX or Win32 Cygwin)ccoeevvveviinieiinneennneenn. 30
4.3.1. gcc (GNU compiler collection)ccovvveiiiiiiiiiciiie e 30
4.3.2. gdb (GNU project debugger)c.veveiiiiiiiei e, 31
4.3.3. ddd (GNU Data Display DebUGUE!)uvvvvnieiiiieiiieeiieeieeceeeeiee 31
4.3.4. Make (GNU MaKE)ccevvvriiiiieeeieieiiie e e e e e e e e s 31

4.4. Microsoft compiler toolchain (Win32 Native)ccceevviveviiiiiiiieciiiceee e, 32
4.4.1. Toolchain Package AIRErNativeScoccuveiiiiiiii e, 32
4.4.2. Legal issues With MSVC > VB2 ...uuiiiieiiiiiiiiiiii e e e 33
4.4.3. cl.exe (C COMPILEL) ..oiieiii e e 34
4.4.4. NMaKe.exe (MaKE)ccoviiiiii i 34
445, [INK.EXE (LINKEN) ..uiiiiiiii e 35
4.4.6. C-Runtime "Redistributable” FileScovviviiiiiiiiiiiiiie, 35
4.4.7. Windows (Platform) SDKc.cociiiiiiiiiiieciir e 37
T o I L = o P 37
e B 1= o0 oo G 38

T o 7 o SRR 38
4.5.1. UNIX or Win32 Cygwin: GNU bashcccovvviiviiiiiieeeeeci, 38
4.5.2. WIN32 NALIVE. = .oeeiiieiiiiie e e e e e e e e e e aan e 38

4.6, PYINON oot 39
4.6.1. UNIX or Win32 Cygwin: pythoncccoveviiiiiiiiiiiieecc e, 39
4.6.2. WIn32 native: PYtNONouiiiiiiec e 39

R o= o NS 39
4.7.1. UNIX or Win32 Cygwin: perlcoooiiiiiiiiiii e, 39
4.7.2. WIN32 NatiVE: Pl .oovniiiei e 40

4.8, S L.uiii e e r e e e e aaran 40
4.8.1. UNIX or Win32 Cygwin: SBAcccvvvuiiiiiiiieeeieriiiiiis e e eeeeevienannns 40

Wireshark Developer's Guide

4.8.2. WIN32 NatiVE! SEoivvviiiiiieieeeeeeieie s e e e e e e e e e 41

4.9, YaCC (DISON) ..ovuiiii i 41
4.9.1. UNIX or Win32 Cygwin: biSONccoovviieiiiiiiiieciiee e, 41
4.9.2. WIn32 native: DiSONcoviiiiiiiiiiii e 41

.10, FIEX 1ieeeeiieeee e 41
4.10.1. UNIX or Win32 Cygwin: fIEXcccoeviiiiiiiiiiiiciie e, 41
4.10.2. WIN32 Native: FleX ...ooveeiiiiiiii e 42

4.11. Subversion (SVN) client (Optional)ccoeviiiiiiiieiiie e 42
4.11.1. UNIX or WIin32 CYgWIin: SVNcvvinieiieeeiiieeiieee e siee e e eaanns 42
4.12.2. WIN32 NALVE SVN ..ieiiiieeeiie e a et e e 42

4.12. Subversion (SVN) GUI client (Optional)ccoeevvuieiiiiiiiiieeii e, 43
4.12.1. UNIX or Win32 Cygwin: rapidSVN, subcommander 43
4.12.2. WIin32 native: TOrMOISESVNiiiiiiiieiiiii e 43

413, diff (OPtIONAI) ..ovvniiiee e 43
4.13.1. UNIX or Win32 Cygwin: GNU diffc..coeeeviiiiiiiiiiiiieeeieeeciiiinnn, 43
4.13.2. WIin32 native: diffooiiiiieiiiiie e 44

4.14. patch (OPLONAL) ...civveiee e 44
4.14.1. UNIX or Win32 Cygwin: patChcccoeeiiiiiiiiniiii e 44
4.14.2. Win32 native: patChccoiiiiii e, 45

4.15. Win32: GNU wget (OptionNal)ccuuieiiiieiiiiiiii e e e 45
4.16. Win32: GNU unzip (OPtionNal)coveiiiieiiiieiiie e e e e 45
4.17. WIin32: NSIS (0PtioNal) ...ccvvneiieeiiiece e e e e eaaes 45
B, Library REFEIENCEuiiiii e e 46
o3 I 1 oo (0o 1o TSP 46
5.2. Binary library fOrmatsooiiiiiiiii e 46
o328 TR U 1 P 46
5.2.2. WIN32: MSVC ...t 46
5.2.3. WIN32: CYQWIN GCC .vvuiiineeiiieii et eee e e e e e e e e e et e e e e e e eaanas 46

5.3. Win32: Automated library downloadccooeviiiiiiiiiiicc e, 46
5.3.1 Initid downloadcoovviiiiiiiiiiei 46
5.3.2. Update of aprevious downloadc.coeveiiiiiiiiiiciiie e 47

5.4, GTK+/ GLib/ GDK / Pango/ ATK / GNU gettext / GNU libiconv 48
SN R U 1 P 48
5.4.2. WIN32 MSVC ...ttt e e e e e e e e e aaeaes 48

5.5, SMI (OPtIONaI) ..cvviiiiieci e 48
ST T U 1 48
5.5.2. WIN32 MSVC ...ttt e e et e e e e e aaeaes 48

5.6. C-areS (OPLIONAL)ciiiiieii e 48
SN L U1 48
5.6.2. WIN32 MSVC ...ttt e e e e e e e e e aaenes 48

5.7. GNU adns (Optional)oeeuniiiiieiie e e e e e 49
ST 280 TR U 1 49
B5.7.2. WIN32 MSVC ...ttt e e e e e e e e aaeaes 49

5.8. ZIID (OPtIONal) ..oevniie e 49
LSS O U1 PR 49
5.8.2. WIN32 MSVC ...t e e et e e e e e aeaaes 49

5.9. libpcap/WiIinPcap (Optional)ccuuieiiiiiiiiie e 49
5.9.1. UNiX: HBPCAD ©vuvvieiii e 49
5.9.2. WIin32 MSVC: WINPCEDcvvviiiieieeeiiiiiiiin e e e e eeeavii s aeeeaeeannnns 49

5.10. GNUTLS (OPLONAL) .vuieiiiiiiii e e e e e e e e 49
ST 0 I L U PR 49
5.10.2. WIN32 MSVC ...ttt e e e e e 50

5.11. GCrypt (OPtIONAL) ...cvvneiiiei e 50
ST 0 L U PP 50
5.11.2. WIN32 MSVC ...ttt e e 50

5.12. Kerberos (Optional)ccuueiiiiieiii e 50
ST 22 T U 1 P 50
5.12.2. WIN32 MSVC ...ttt a e e e e 50

Wireshark Developer's Guide

5.13. LUA (OPLIONEA) ovvniiiiiiiiee e e e e e e e e e e e e e e e e een 50
oI 30 O U 3 QSRR 50

5.13.2. WIN32 MSVC ..ttt 50

5.14. PortAudio (OPLioNal)uieiiiieiii i 50
oI 7 T U) G SRR 50

5.14.2. WIN32 MSVC ..ottt e 51

5.15. GEOIP (OPLIONAL) ...uieieiii e e e e e e 51
B.A5. L. UNIX ittt 51

5.15.2. WIN32 MSVC ..ottt e 51

I1. Wireshark Development (iNCOMPIELE)covuiiiiiiii e e 52
6. HOW WIreshark WOIKScovuuiiiiiiii et eee 53
(20 I 1 oo (0o 1o OSSPSR 53

B.2. OVEIVIBIW .eeviieiiiii ettt e ettt e e e et e e et et e e e e et neeeesteneeaentnneaeee 53

6.3. Capturing PACKELSevueiii e e e e e e e e e e et e e eaen 54

B.4. Capture FilBS ..o 54

6.5, DISSECE PACKELS ...uuiiiiciiii e e 54

8 1110 o (8o o o P 55
7.1, SOUICE OVEIVIEW ..eeviieeiiiii e et e e et e e e et e e e et e e e et e e e et e e e e et eeeeenenas 55

7.2. Coding StYIEQUITESceiiiiii e e e e 55

7.3. The GLID lIBrarycoouiiii s 55

S = o (= A o= o (1 11 56
8.1. How to add a new capture type to libpcapccooovviiiiiiiii e, 56

9. PaCket diSSECHIONvuuiiiiii et 57
9.1, HOW 1t WOTKS ... 57

9.2. Adding @ basiC diSSECIONucvvuiiiiiieiii e 57
9.2.1. Setting up the diSSECIONcvvviiiiii e 57

9.2.2. Dissecting the details of the protocolcccccoeviiiiiiiiiiinece, 59

9.2.3. Improving the dissection informationccc.cocoiviiiniii e, 63

9.3. How to handle transformed dataoveveiiiieiiiiiiiec e, 65

9.4. How to reassemble split PaCKELSoevvniiiiiicii e 66
9.4.1. How to reassemble split UDP packetS..........cocovvviiiiiiiiiiiiin e, 66

9.4.2. How to reassemble split TCP Packets.........ccoccvveiiiiiiiin i, 70

9.5. HOW 10 tap ProtOCOIS . .uive i 71

9.6. HOW t0 produce protoCOl StaSuevvieiiieiiiiieei e e e e e e e eaaes 72

9.7. HOW O USE CONVEISALIONSvueeiiiiiieeeiii e et e e et e et e et e e eate e e eeeens 73

10, USEr INEEITACE ...ueeeiiee e e e e ean e 74
050 1 1 oo [0 1o PSP 74

10.2. The GTK TIBIary .oooveiieeii e 74
10.2.1. GTK VEISION LoX tueiiiiinieiiiiiieeeiinse e et e e et e e et e e s et e e e enen e 74

10.2.2. GTK VEISION 2.X 1uieiiiiinieieiiiieeeiinaeeeeinae e et ae s et s e s eaineeeenen e 75

10.2.3. Compatibility GTK VErSIONScovvniiiiieiiiiciiieeeie e e e e 76

10.2.4. GTK resources on the Weboovveiiiiiniiiiiie e 76

10.3. GUI Reference doCUMENESuuiieiiiiieeeeiiie e 76

10.4. Adding/EXtending Dialogs ... cc.uueiriieiiiieiii e e e e e e 76

O VAV T (o= =T oo 76

10.6. Common GTK programming pitfallSccoooiiiiiiiiiiiii e 77
10.6.1. Usage of gtk_widget_show() / gtk_widget_show_all() 77

A. This Document's LIiCENSE (GPL) ...cuuuiiiiiiiii e e e e e e e e e e e aen 78

Vi

Preface

1. Foreword

This book tries to give you a guide to start your own experiments into the wonderful world of
Wireshark development.

Developers who are new to Wireshark often have a hard time getting their development environment
up and running. Thisis especially true for Win32 developers, as alot of the tools and methods used
when building Wireshark are much more common in the UNIX world than on Win32.

Thefirst part of this book will describe how to set up the environment needed to develop Wireshark.
The second part of this book will describe how to change the Wireshark source code.

We hope that you find this book useful, and look forward to your comments.

2. Who should read this document?

Theintended audience of this book is anyone going into the development of Wireshark.

This book is not intended to explain the usage of Wireshark in general. Please refer the Wireshark
User's Guide about Wireshark usage.

By reading this book, you will learn how to develop Wireshark. It will hopefully guide you around
some common problems that frequently appear for new (and sometimes even advanced) developers
of Wireshark.

3. Acknowledgements

Theauthorswould liketo thank thewhole Wireshark team for their assistance. In particular, the authors
would like to thank:

» Gerald Combs, for initiating the Wireshark project.

» Guy Harris, for many helpful hints and his effort in maintaining the various contributions on the
mailing lists.

The authorswould also like to thank the following people for their hel pful feedback on this document:
e XXX - Please give feedback :-)

And of course a big thank you to the many, many contributors of the Wireshark development
community!

4. About this document

This book was developed by Ulf Lamping.
It iswrittenin DocBook/XML.

Y ou will find some specially marked partsin this book:

ﬂ Thisisawarning!
Y ou should pay attention to awarning, as otherwise data loss might occur.

vii

http://www.wireshark.org/docs/
http://www.wireshark.org/docs/
mailto:ulf.lamping[AT]web.de

Preface

ﬁ Thisisanote!
}_ A note will point you to common mistakes and things that might not be obvious.

Thisisatip!

L] Tipswill be helpful for your everyday work developing Wireshark.

5. Where to get the latest copy of this
document?

Thelatest copy of this documentation can always be found at: http://www.wireshark.org/docs/ in PDF
(A4 and US letter), HTML (single and chunked) and CHM format.

6. Providing feedback about this document

Should you have any feedback about this document, please send it to the authors through wireshark-
dev[AT]wireshark.org.

viii

http://www.wireshark.org/docs/
mailto:wireshark-dev[AT]wireshark.org
mailto:wireshark-dev[AT]wireshark.org

Part |. Wireshark Build Environment

Part |. Wireshark Build Environment

Thefirst part describes how to set up the tools, libraries and sour ce needed to generate Wireshark, and
how to do sometypical development tasks.

Part I1. Wireshark Devel opment

The second part describes how the Wireshark sources are structured and how to change the sources (e.g. adding
anew dissector).

Chapter 1. Introduction

1.1. Introduction

This chapter will provide you with information about Wireshark development in general.

1.2. What is Wireshark?

WEell, if youwant to start Wireshark development, you might already know what Wireshark isdoing. If
not, please have alook at the Wireshark User's Guide, which will provide alot of general information
about it.

1.3. Platforms Wireshark runs on

Wireshark currently runs on most UNIX platforms and various Windows platforms. It requires GTK
+, GLib, libpcap and some other librariesin order to run.

AsWireshark is developed in a platform independent way and uses libraries (such asthe GTK+ GUI
library) which are available for a lot of different platforms, it's thus available on a wide variety of
platforms.

If abinary packageis not available for your platform, you should download the source and try to build
it. Please report your experiences to wireshark-dev[AT]wireshark.org.

Binary packages are available for at |east the following platforms:

1.3.1. Unix

» AppleMac OS X
e BeOS

* FreeBSD

* HP-UX

* IBM AIX

« NetBSD

* OpenBSD

» SCO UnixWare/OpenUnix
* SGI Irix

* Sun Solarig/Intel
» Sun Solaris/Sparc

e Trub4 UNIX (formerly Digital UNIX)

1.3.2. Linux

» Debian GNU/Linux

http://www.wireshark.org/docs/
mailto:wireshark-dev[AT]wireshark.org

Introduction

+ Ubuntu

» Gentoo Linux

« IBM S/390 Linux (Red Hat)
» Mandrake Linux

e PLD Linux

* Red Hat Linux

* Rock Linux

 Slackware Linux

» Suse Linux

1.3.3. Microsoft Windows

Thanks to the Win32 API, development on all Windows platforms will be done in a very similar
way. All Windows platforms referred to as Win32, Win or Windows may be used with the same
meaning. Older Windows versions are no longer supported by Wireshark. As Windows CE differsa
lot compared to the other Windows platforms mentioned, Wireshark will not run on Windows CE and
there are no plans to support it.

Also the 64 bit Windows version are now supported by Wireshark. Although not al libraries are made
64 bit ready yet, basic operations are all available.

» Windows Server 2000
* Windows XP

* Windows Server 2003
* Windows Vista

* Windows 7

* Windows Server 2008

1.4. Development and maintenance of
Wireshark

Wireshark was initially developed by Gerald Combs. Ongoing development and maintenance of
Wireshark is handled by the Wireshark core developers, a loose group of individuals who fix bugs
and provide new functionality.

There have also been a large number of people who have contributed protocol dissectors and oher
improvementsto Wireshark, and it is expected that thiswill continue. Y ou can find alist of the people
who have contributed code to Wireshark by checking the About dialog box of Wireshark, or have a
look at the http://anonsvn.wireshark.org/wireshark/trunk/AUTHORS page on the Wireshark web site.

The communication between the devel opersis usually done through the developer mailing list, which
can be joined by anyone interested in the development activities. At the time this document was
written, more than 500 persons were subscribed to this mailing list!

It is strongly recommended to join the developer mailing list, if you are going to do any Wireshark
development. See Section 1.7.5, “Mailing Lists’ about the different Wireshark mailing lists available.

http://anonsvn.wireshark.org/wireshark/trunk/AUTHORS

Introduction

1.4.1.

1.4.2.

Programming language(s) used
Almost any part of Wireshark isimplemented in plain ANSI C.

Thetypical task for anew Wireshark developer isto extend an existing, or write a new dissector for a
specific network protocol. As (almost) any dissector iswrittenin plain old ANSI C, agood knowledge
about ANSI C will be sufficient for Wireshark development in almost any case.

So unless you are going to change the build process of Wireshark itself, you won't comein touch with
any other programming language than ANSI C (such as Perl or Python, which are used only in the
Wireshark build process).

Beside the usual toolsfor developing aprogramin C (compiler, make, ...), the build process uses some
additional helper tools (Perl, Python, Sed, ...), which are needed for the build process when Wireshark
isto be build and installed from the released source packages. If Wireshark isinstalled from a binary
package, none of these helper tools are needed on the target system.

Open Source Software

Wireshark is an open source software (OSS) project, and is released under the GNU General Public
License (GPL). Y ou can freely use Wireshark on any number of computersyou like, without worrying
about license keys or fees or such. In addition, al source code is freely available under the GPL.
Because of that, it isvery easy for people to add new protocolsto Wireshark, either as plugins, or built
into the source, and they often do!

You are welcome to modify Wireshark to suit your own needs, and it would be appreciated if you
contribute your improvements back to the Wireshark community.

Y ou gain three benefits by contributing your improvements back to the community:

» Other people who find your contributions useful will appreciate them, and you will know that you
have helped people in the same way that the developers of Wireshark have helped you and other
people.

» The developers of Wireshark might improve your changes even more, as there's always room for
improvement. Or they may implement some advanced things on top of your code, which can be
useful for yourself too.

» The maintainers and developers of Wireshark will maintain your code as well, fixing it when API
changes or other changes are made, and generally keeping it in tune with what is happening with
Wireshark. So if Wireshark is updated (which is done often), you can get a new Wireshark version
from the website and your changes will already be included without any effort for you.

The Wireshark source code and binary packages for some platforms are all available on the download
page of the Wireshark website: http://www.wireshark.org/download/.

1.5. Releases and distributions

1.5.1.

The officially released files can be found at: http://www.wireshark.org/download/. A new Wireshark
version is released after significant changes compared to the last release are completed or a serious
security issue is encountered. The typical release schedule is about every 4-8 weeks (although this

may vary).

There aretwo kinds of distributions: binary and source; both have their advantages and disadvantages.

Binary distributions

Binary distributions are usually easy to install (as simply starting the appropriate file is usualy the
only thing to do). They are available for the following systems:

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.wireshark.org/download/
http://www.wireshark.org/download/

Introduction

1.5.2.

» Windows (.exefile). The typical Windows end user is used to get a setup.exe file which will install
al the required things for him.

* Win32 U3 (.u3file). Special distribution for U3 capable USB memory sticks.

* Win32 PAF (.paf.exe file). Another Windows end user method isto get a portable application file
which will install all the required things for him.

» Debian (.deb file). A user of a Debian Package Manager (DPKG) based system obtains a .deb file
from which the package manager checks the dependencies and installs the software.

* Red Hat (.rpm file). A user of a Red Hat Package Manager (RPM) based system obtains an .rpm
file from which the package manager checks the dependencies and installs the software.

* MACOSX (.dmgfile). Thetypical MAC OS X end user isused to get a.dmg filewhich will install
all the required things for him. The other requirement is to have the X11.app installed.

e Solaris. A Solaris user obtains a file from which the package manager (PKG) checks the
dependencies and installs the software.

However, if you want to start devel oping with Wireshark, the binary distributionswon't be too helpful,
as you need the source files, of course.

For details about how to build these binary distributions yourself, e.g. if you need adistribution for a
special audience, see Section 3.12, “Binary packaging”.

Source code distributions

It's still common for UNIX developers to give the end user a source tarball and let the user compile
it on their target machine (configure, make, make install). However, for different UNIX (Linux)
distributionsit'sbecoming more common to release binary packages (e.g. .deb or .rpmfiles) thesedays.

Y ou should use the released sources if you want to build Wireshark from source on your platform for
productive use. However, if you going to develop changes to the Wireshark sources, it might be better
to use the latest SVN sources. For details about the different ways to get the Wireshark source code
see Section 3.3, “Obtain the Wireshark sources’.

Before building Wireshark from a source distribution, make sure you have al the tools and libraries
required to build. The following chapters will describe the required tools and libraries in detail.

1.6. Automated Builds (Buildbot)

1.6.1.

The Wireshark Buildbot automatically rebuilds Wireshark on every change of the source code
repository and indicates problematic changes. Thisfreesthe devel opers from repeating (and annoying)
work, so time can be spent on more interesting tasks.

Advantages

* Recognizing (cross platform) build problems - early. Compilation problems can be narrowed down
to afew commits, making afix much easier.

» "Health status' overview of the sources. A quick look at: http://buildbot.wireshark.org/trunk/ gives
agood "feeling" if the sources are currently "well". On the other hand, if al is"red", an update of
apersonal source tree might better be done later ...

» "Uptodate" binary packagesare available. After achange was committed to the repository, abinary
package/ installer is usually available within afew hours at: http://www.wireshark.org/download/
automated/. This can be quite helpful, e.g. a bug reporter can easily verify a bugfix by installing
arecent build.

http://buildbot.wireshark.org/trunk/
http://www.wireshark.org/download/automated/
http://www.wireshark.org/download/automated/

Introduction

» Automated regression tests. In particular, the fuzz tests often indicate "real life" problems that are
otherwise hard to find.

1.6.2. What does the Buildbot do?

The Buildbot will do the following (to a different degree on the different platforms):
» checkout from the source repository

* build

* create binary package(s) / installer

* create source package (and check compl eteness)

* runregression tests

Each step isrepresented at the status page by arectangle, greenif it succeeded or red if it failed. Most
steps provide alink to the corresponding console logfile, to get additional information.

The Buildbot runs on a platform collection that represents the different "platform specialties' quite
well:

» Windows XP x86 (Win32, little endian, VS 9)

» Windows XP x86-64 (Win64, little endian, VS 9)
» Ubuntu x86-64 (Linux, little endian, gcc)

» Solaris SPARC (Solaris, big endian, gcc)

* Mac OS-X PPC (BSD, big endian, gcc)

* Mac OS-X x86 (BSD, little endian, gcc)

Each platformisrepresented at the status page by asingle column, the most recent entriesare at the top.

1.7. Reporting problems and getting help

If you have problems, or need help with Wireshark, there are several places that may be of interest
to you (well, beside this guide of course).

1.7.1. Website

You will find lot's of useful information on the Wireshark homepage at http://www.wireshark.org.

1.7.2. Wiki

The Wireshark Wiki at http://wiki.wireshark.org provides a wide range of information related to
Wireshark and packet capturing in general. You will find a lot of information not part of this
developer's guide. For example, there is an explanation how to capture on a switched network, an
ongoing effort to build a protocol reference and alot more.

And best of al, if youwould like to contribute your knowledge on a specific topic (maybe a network
protocol you know well), you can edit the wiki pages by simply using your webbrowser.

1.7.3. FAQ

The "Frequently Asked Questions” will list often asked questions and the corresponding answers.

http://www.wireshark.org
http://wiki.wireshark.org

Introduction

1.7.4.

1.7.5.

Before sending any mail to the mailing lists below, be sure to read the FAQ, as it will often answer
the question(s) you might have. This will save yourself and others alot of time (keep in mind that a
lot of people are subscribed to the mailing lists).

You will find the FAQ inside Wireshark by clicking the menu item Help/Contents and selecting the
FAQ pagein the upcoming dialog.

An online version is available at the Wireshark website: http://www.wireshark.org/fag.html. Y ou
might prefer thisonlineversion, asit'stypically more up to date and the HTML format is easier to use.

Other sources

If you don't find the information you need inside this book, there are various other sources of
information:

« the file doc/ READNME. devel oper and al the other README.xxx files in the source code -
these are various documentation files on different topics

_41 Read the README!
¥

S The README.developer is packed full with all kinds of details relevant to the
developer of Wireshark source code. It advices you around common pitfalls, shows
you basic layout of dissector code, shows details of the API's avail able to the dissector
devel oper, etc.

» the Wireshark source code

tool documentation of the various tools used (e.g. manpages of sed, gcg, ...)

the different mailing lists: see Section 1.7.5, “Mailing Lists’

Mailing Lists
There are several mailing lists available on specific Wireshark topics:

wir eshark-announce This mailing list will inform you about new program releases, which
usually appear about every 4-8 weeks.

wireshark-users Thislist isfor users of Wireshark. People post questions about building
and using Wireshark, others (hopefully) provide answers.

wireshark-dev This list is for Wireshark developers. People post questions about the
development of Wireshark, others (hopefully) provide answers. If you
want to start developing a protocol dissector, join thislist.

wireshark-bugs This list is for Wireshark developers. Every time a change to the bug
database occurs, amail to thismailing list is generated. If you want to be
notified about all the changes to the bug database, join thislist. Details
about the bug database can be found in Section 1.7.6, “Bug database

(Bugzilla)”.

wireshark-commits Thislist is for Wireshark developers. Every time a change to the SVN
repository is checked in, a mail to this mailing list is generated. If you
want to be notified about all the changesto the SVN repository, join this
list. Details about the SV N repository can be found in Section 3.2, “The
Wireshark Subversion repository”.

http://www.wireshark.org/faq.html

Introduction

1.7.6.

1.7.7.

You can subscribe to each of these lists from the Wireshark web site: http://www.wireshark.org.
Simply select the mailing lists link on the left hand side of the site. The lists are archived at the
Wireshark web site as well.

Tip!

L] You can search in thelist archivesto seeif someone previously asked the same question
and maybe already got an answer. That way you don't haveto wait until someone answers
your question.

Bug database (Bugzilla)

The Wireshark community collects bug reports in a Bugzilla database at https://bugs.wireshark.org.
This database is filled with manually filed bug reports, usually after some discussion on wireshark-
dev, and automatic bug reports from the buildbot tools.

Reporting Problems

ﬁ Notel

J'_ Before reporting any problems, please make sure you have installed the latest version
of Wireshark. Reports on older maintainance releases are usually met with an upgrade

request.

If you report problems, provide as much information as possible. In general, just think about what you
would need to find that problem, if someone else sends you such a problem report. Also keep in mind
that people compile/run Wireshark on alot of different platforms.

When reporting problems with Wireshark, it is helpful if you supply the following information:

1. The version number of Wireshark and the dependent libraries linked with it, e.g. GTK+, etc. You
can obtain this with the command wireshark -v.

2. Information about the platform you run Wireshark on.
3. A detailed description of your problem.

4. If you get an error/warning message, copy the text of that message (and also afew lines before and
after it, if there are some), so others may find the build step where things go wrong. Please don't
give something like: "1 get awarning when compiling x" asthiswon't give any direction to look at.

_41 Don't send largefiles!
&

Do not send large files (>100K B) to the mailing lists, just place a note that further data
is available on request. Large files will only annoy a lot of people on the list who are
not interested in your specific problem. If required, you will be asked for further data by
the persons who really can help you.

ﬁ Don't send confidential infor mation!
&

If you send captured data to the mailing lists, or add it to your bug report, be sure it
doesn't contain any sensitive or confidential information, such as passwords. Visibility
of such files can be limited to certain groups in the Bugzilla database though.

1.7.8. Reporting Crashes on UNIX/Linux platforms

When reporting crashes with Wireshark, it is helpful if you supply the traceback information (besides
the information mentioned in Section 1.7.7, “Reporting Problems”).

http://www.wireshark.org
https://bugs.wireshark.org

Introduction

Y ou can obtain this traceback information with the following commands:

$ gdb “whereis wireshark | cut -f2 -d: | cut -d ' -f2° core >& bt.txt
backtrace

~D

$

TJ'T Note
. Type the charactersin the first line verbatim! Those are back-tics there!

Tﬁ Note

. backtrace is a gdb command. You should enter it verbatim after the first line shown
above, but it will not be echoed. The *D (Control-D, that is, press the Control key and
the D key together) will cause gdb to exit. Thiswill leaveyou with afilecaled bt . t xt
in the current directory. Include the file with your bug report.

| ﬁ Note
. If you do not have gdb available, you will have to check out your operating system's
debugger.

Y ou should mail the traceback to the wireshark-dev[AT]wireshark.org mailing list, or attach it to your
bug report.

1.7.9. Reporting Crashes on Windows platforms

The Windows distributions don't contain the symbol files (.pdb), because they are very large. For this
reason it's not possible to create a meaningful backtrace file from it. Y ou should report your crash just
like other problems, using the mechanism from Section 1.7.7, “ Reporting Problems’.

mailto:wireshark-dev[AT]wireshark.org

Chapter 2. Quick Setup
2.1. UNIX: Installation

All thetools required are usualy installed on a UNIX developer machine.

If atool isnot already installed on your system, you will typically use the installation package from
your distribution (by your favourite package manager: aptitude, yum, synaptics, ...).

If an install package is not available, or you have a reason not to use it (maybe because it's simply
too old), you can install that tool from source code. The following sections will provide you with the
webpage addresses where you can get these sources.

2.2. Win32: Step-by-Step Guide

2.2.1.

A quick setup guide for Win32 with recommended configuration.

ﬂ Warning!
Unless you know exactly what you are doing, you should strictly follow the
recommendations!

Install Microsoft C compiler and Platform SDK

You need to install:

1. C compiler: Download and install "Microsoft Visual C++ 2008 Express Edition SP1." (Thisisa
very large download.)

Install MSVC the usual way. Don't forget to install vevar s32. bat or cal it manually before
building Wireshark. vcvar s32. bat will set some required environment (e.g. the PATH) settings.

You can use other Microsoft C compiler variants!

L' | It's possible to compile Wireshark with a wide range of Microsoft C compiler variants.
For details see Section 4.4, “Microsoft compiler toolchain (Win32 native)”!

ﬂ Don't use Cygwin's gcc!

Using Cygwin's gcc is not recommended and will certainly not work (at |east without
alot of advanced tweaking). For further details on this topic, see Section 4.3, “GNU
compiler toolchain (UNIX or Win32 Cygwin)”.

XXX - mention the compiler and PSDK web installers - which significantly reduce download size -
and find out the required components

Wireshark development depends on several environment variables, particularly PATH. You can use
abatch script to fill thesein, for example

@cho of f

echo Adding things to the path...
set PATH=%PATHY .

set PATH=%ATHY% c:\ cygw n\ bi n

echo Setting up Visual Studio environnent...
call "c:\Program Files\M crosoft Visual Studio 9.0\VC bin\vcvars32. bat"

10

http://www.microsoft.com/express/Downloads/#Visual_Studio_2008_Express_Downloads

Quick Setup

2.2.2.

2.2.3.

2.2.4.

title Conmand Pronpt (VC++ 2008)

Why is this recommended? While this is a huge download, the 2008 Express Edition is the only free
(asin beer) version that includes the Visual Studio integrated debugger. Visual C++ 2008 is also used
to create official Wireshark builds, so it will likely have fewer devel opment-related problems.

Install Cygwin

Download the Cygwin installer and start it.

At the "Select Packages' page, you'll need to select some additional packages, which are not installed
by default. Navigate to the required Category/Package row and click on the"Skip" item in the "New"
column so it shows a version number for:

» Archivelunzip

Archivelzip (only needed if you intend to build the U3 package)
» Baselrebase

» Devel/bison

» Devel/flex

* Interpreters/perl

 Utils/patch

» Web/wget

After clicking the Next button several times, the setup will then download and install the selected
packages (this may take awhile).

Why thisisrecommended: Cygwin's bash version isrequired, asno native Win32 versionisavailable.
As additional packages can easily be added, the perl and alike packages are also used.

Install Python

Get the Python 2.7 installer from: http://python.org/download/ and install Python into the default
location (C:\Python27).

Why this is recommended: Cygwin's Python package doesn't work on some machines, so the Win32
native package is recommended.

Install Subversion Client

Please notethat thefollowing isnot required to build Wireshark, but can be quite hel pful when working
with the sources.

Why thisisrecommended: updating apersonal sourcetreeissignificantly easier to do with Subversion
than downloading a zip file and merging new sources into a personal source tree "by hand".

2.2.4.1. Subversion

If youwant to work with the Wireshark Subversion source repositories (whichishighly recommended,
see Section 3.3, “Obtain the Wireshark sources’), it's recommended to install Subversion. This makes
the first time setup easy and enables the Wireshark build process to determine your current source
code revision. Y ou can download the setup from http://subversion.tigris.org/ and simply install it.

11

http://www.cygwin.com/setup.exe
http://python.org/download/
http://subversion.tigris.org/

Quick Setup

2.2.4.2. TortoiseSVN

2.2.5.

2.2.6.

If you want to work with the Wireshark Subversion source repositories (which ishighly recommended,
see Section 3.3, “Obtain the Wireshark sources’), it's recommended to use TortoiseSVN for your
everyday work. Y ou can download the setup from http://tortoisesvn.tigris.org/ and simply install it.

Install and Prepare Sources
Tip
LY] It'sagood ideato successfully compile and run Wireshark at least once before you start
hacking the Wireshark sources for your own project!
1. Download sources : Download Wireshark sourcesinto: C: \ wi r eshar k using TortoiseSVN
a. right click on the C:\ drive in Windows Explorer
b. in the upcoming context menu select "SVN checkout..." and then set:
c. i. URL of repository: " http://anonsvn. wi reshark. or g/ wi reshark/ trunk/"
ii. Checkout directory: C. \ wi r eshar k
d. TortoiseSVN might ask you to create this directory - say yes
e. TortoiseSVN starts downloading the sources

f. if the download fails you may be behind a restrictive firewall, see Section 3.3, “Obtain the
Wireshark sources’ for aternative download methods

2. Edit config.nmake: edit the settingsin C: \ wi r eshar k\ conf i g. nmake, especialy:

a. VERSI ON_EXTRA : Give Wireshark your "private" version info, e.g.: -myprotocol123 - to
distinguish it from an official release!

b. PROGR’AZ\M_FI LES : Where your programs reside, usually just keep the default: C. \ Pr ogr am
Files

c. MSVC_VARI ANT : Make surethe variant for your compiler is uncommented, and that all others
are commented out. For example, if you're using Visual C++ 2008 Express Edition, find theline

#MSVC_VARI ANT=MBVC2008EE
and remove the comment character (#) from the beginning of the line. Then, find the line
MBVC_VARI ANT=MBVC2008

and comment it out, by prefixing a hash (#).

1Compiler dependent: This step depends on the compiler you are using. For compilers other than
Visual C++ 2008, see the table at Section 4.4, “Microsoft compiler toolchain (Win32 native)”.

2| nternational Windows might use different values here, e.g. aGerman version usesC: \ Pr ogr amme
- take thisaso in account where C: \ Pr ogr am Fi | es appears elsewhere.

Prepare cmd.exe

Prepare cimd. exe - set environment and current dir.

12

http://tortoisesvn.tigris.org/

Quick Setup

2.2.7.

2.2.8.

1. start cmd.exe

2. cal C:\Program Files\Microsoft Visual Studio 9.0\VC\bin\vcvars32.bat to set environment
variables of Visual C++ 2008 Express Edition.

3. cd C:\wireshark to jump into the source directory

1Compiler dependent: This step depends on the compiler variant used, for other variants than the
recommended Visual C++ 2008 Express Edition see the table at Section 4.4, “Microsoft compiler
toolchain (Win32 native)”!

?International Windows mi ght use different values here, e.g. aGerman version usesC: \ Pr ogr amme
- take thisalso in account where C: \ Pr ogr am Fi | es appears elsewhere. Note: Y ou need to repeat
steps 1 - 4 each time you open a new cmd.exe!

Verify installed tools

After you've installed the Wireshark sources (see Section 3.3, “Obtain the Wireshark sources’),
you can check the correct installation of al tools by using the verify tool s target of the
Makef i | e. nnmake from the source package.

E War ning!
Y ou will need the Wireshark sources and sometools (nmake, bash) installed, before this
verification is able to work.

Enter at the command line (cmd.exe, not Cygwin's bash!):
>nmake -f Makefile.nmake verify tools

Thiswill check for the various tools needed to build Wireshark:

Checking for required applications:
cl: /cygdrivel/c/Progranme/ M crosoft Visual Studio 8/ VC Bl N cl
link: /cygdrivel/c/Progranme/ M crosoft Visual Studio 8/ VC BINIink
nmaeke: /cygdrive/c/ Progranmme/ M crosoft Visual Studio 8/ VCJ Bl N nnake
bash: /usr/bin/bash
bi son: /usr/bin/bison
flex: /usr/bin/flex
env: /usr/bin/env
grep: /usr/bin/grep
lusr/bin/find: /usr/bin/find
perl: /usr/bin/perl
env: /usr/bin/env
C. / pyt hon27/ pyt hon. exe: /cygdrive/c/ python27/ python. exe
sed: /usr/bin/sed
unzi p: /usr/bin/unzip
wget: /usr/bi n/wyet

If you have problems with al the first three items (cl, link, nmake), check if you called vcvar s32/
Set Env as mentioned in Section 2.2.6, “Prepare cmd.exe” (which will "fix" your PATH settings).
However, the exact text will be dightly different depending on the MSV C version used.

Unfortunately, the link command is defined both in Cygwin and in MSVC each with completely
different functionality; you'll need the MSVC link. If your link command looks something like: /usr/
bin/link, the link command of Cygwin takes precedence over the MSVC one. To fix this, you can
change your PATH environment setting or simply renamethel i nk. exe in Cygwin. If you rename
it, make sure to remember that a Cygwin update may provide a new version of it.

Install Libraries

1. If you've closed cmd.exe in the meantime, prepare cmd.exe again.

13

Quick Setup

2.2.9.

2. nmake -f Makefile.nmake setup downloads libraries using wget and installs them - this may take
awhile....

3. If the download fails you may be behind a restrictive firewall, see the proxy comment in
Section 4.15, "Win32: GNU wget (optional)”.

Distclean Sources

The released Wireshark sources contain files that are prepared for aUNIX build (e.g. conf i g. h).
Y ou must distclean your sources before building the first timel
1. If you've closed cmd.exe in the meantime, prepare cmd.exe again

2. nmake -f M akefilenmake distclean to cleanup the Wireshark sources

2.2.10. Build Wireshark

Now it'stime to build Wireshark ...

1. If you've closed cmd.exe in the meantime, prepare cmd.exe again

2. nmake -f Makefilenmake all to build Wireshark

3. wait for Wireshark to compile - this may take a while!

4. run C:\wireshar k\wireshark-gtk2\wir eshar k.exe and check if it starts

5. check Help/About if it shows your "private" program version, e.g.: Version 1.9.x-myprotocol 123
- you might run arelease version previously installed!

Tip: If compilation fails for suspicious reasons after you changed some source files try to "distclean”
the sources and make "al" again

2.2.11. Debug Environment Setup (XXX)

XXX - debug needs to be written, e.g. an idea is the create a simple M SV C workspace/project(s) to
ease Visual Studio debugging

2.2.12. Optional: Create User's and Developer's Guide

Detailed information to build these guides can be found in the file docbook/ README. t xt in the
Wireshark sources.

2.2.13. Optional: Create a Wireshark Installer

Note: Y ou should have successfully built Wireshark before doing the following!

If youwant to build your ownwi r eshar k- wi n32- 1. 9. x- nypr ot ocol 123. exe, you'll need
NSIS.

1. NSIS: Download and install NSIS
Y ou may check the MAKENSI S setting in the fileconf i g. nnake of the Wireshark sources.

2. vcredi st _x86. exe : Download the C-Runtime redistributable for Visual C++ 2008 Express
Edition SP1 (vcr edi st _x86. exe) and copy itinto C: \ wi r eshar k- wi n32-1i bs 1

3. If you've closed cmd.exe in the meantime, prepare cmd.exe again

14

http://nsis.sourceforge.net
http://www.microsoft.com/DOWNLOADS/details.aspx?FamilyID=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en

Quick Setup

4. nmake -f M akefilenmake packaging build Wireshark installer

5. run C:\wireshark\packaging\nsis\wir eshar k-win32-1.9.x-myprotocol 123.exe and test it - it's a
good ideato test also on a different machine than the developer machine.

1Compiler dependent: This step depends on the compiler variant used; for other variants than the
recommended Visual C++ 2008 Express Edition SP1 seethe table at Section 4.4, “Microsoft compiler
toolchain (Win32 native)”!

15

Chapter 3. Work with the Wireshark
sources

3.1. Introduction

This chapter will explain how to work with the Wireshark source code. It will show you how to:
* get the source

» compile the source

» submit changes

However, thischapter will not explain the source file contentsin detail, such aswhereto find aspecific
functionality. Thisis donein Section 7.1, “ Source overview”.

3.2. The Wireshark Subversion repository

Subversion is used to keep track of the changes made to the Wireshark source code. The Wireshark
source code is stored inside Wireshark project's Subversion repository located at a server at the
wireshark.org domain.

To quote the Subversion book about "What is Subversion?":

“Subversion is a free/open-source version control system. That is, Subversion manages files and
directories over time. A tree of filesis placed into a central repository. The repository is much like an
ordinary fileserver, except that it remembers every change ever madeto your filesand directories. This
allows you to recover older versions of your data, or examine the history of how your data changed.
In this regard, many people think of aversion control system as a sort of "time machine". ”

Tip: Subversion and SVN isthe same!

L Subversion is often abbreviated as SVN, as the command-line tools are abbreviated
that way. Y ou will find both terms with the same meaning in this book, in mailing list
discussions and elsewhere.

Using Wireshark's Subversion repository you can:

* keep your private sources up to date with very little effort

» get amail notification if someone changes the latest sources

* get the source files from any previous release (or any other point in time)

» haveaquick look at the sources using aweb interface

» seewhich person changed a specific piece of code

... and alot more things related to the history of the Wireshark source code devel opment

Subversion is divided into a client and a server part. Thanks to Gerald Combs (the maintainer of the
Subversion server), no user hasto deal with the maintenance of the Subversion server. Y ou will only
need a Subversion client, which isavailable as both a command-line and a GUI tool for many different
platforms.

16

Work with the Wireshark sources

3.2.1.

For further reference about Subversion, have a look at the homepage of the Subversion project:
http://subversion.tigris.org/. There is a good and free book about it available at: http://svnbook.red-
bean.com/.

Please note that Wireshark's public (anonymous) Subversion repository is separate from the main
repository. It may take several minutes for committed changes to appear in the public repository - so
please be patient for a few minutes if you desperately need a code change that was committed to the
repository very recently.

The web interface to the Subversion repository
If you need a quick look at the Wireshark source code, you will only need a Web browser.
A si npl e vi ewon thelatest developer version can be found at:

http://anonsvn.wireshark.org/wireshark/trunk/.

A conpr ehensi ve vi ewof all source versions (e.g. including the capability to show differences
between versions) is available at:

http://anonsvn.wireshark.org/viewvc/viewvc.cgi/.

Of special interest might be the subdirectories:
* trunk - thevery latest sourcefiles

» rel eases - thesourcefiles of all released versions

3.3. Obtain the Wireshark sources

3.3.1.

There are several ways to obtain the sources from Wireshark's Subversion server.

Anonymous Subver sion accessisrecommended!

L] It can make your life much easier, compared to updating your source tree by using any
of the zip file methods mentioned below. Subversion handles merging of changes into
your personal sourcetreein avery comfortable and quick way. So you can update your
source tree several times a day without much effort.

ﬁ Keep your sources" up to date"!
&

S The following ways to retrieve the Wireshark sources are sorted in decreasing source
timeliness. If you plan to commit changes you've made to the sources, it's a good idea
to keep your private source tree as current as possible.

The age mentioned in the following sections indicates the age of the most recent change in that set
of the sources.

Anonymous Subversion access

Recommended for devel opment purposes.
Age: afew minutes.

Y ou can use a Subversion client to download the source code from Wireshark's anonymous Subversion
repository. The URL for the repository trunk is: http://anonsvn.wireshark.org/wireshark/trunk/.

See Section 4.11, “Subversion (SVN) client (optional)” on how to install a Subversion client.

17

http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://anonsvn.wireshark.org/wireshark/trunk/
http://anonsvn.wireshark.org/viewvc/viewvc.cgi/
http://anonsvn.wireshark.org/wireshark/trunk/

Work with the Wireshark sources

3.3.2.

3.3.3.

3.3.4.

For example, to check out using the command-line Subversion client, you would type:

$ svn checkout http://anonsvn. wi reshark. org/ w reshark/ trunk
wi r eshar k

The checkout has to be only done once. Thiswill copy al the sources of the latest version (including
directories) from the server to your machine. This will take some time, depending on the speed of
your internet connection.

Anonymous Subversion web interface

Recommended for informational purposes only, as only individual files can be downloaded.
Age: afew minutes (same as anonymous Subversion access).

The entire source tree of the Subversion repository is available via a web interface at: http://
anonsvn.wireshark.org/viewvc/viewvc.cgi/. Y ou can view each revision of aparticular file, aswell as
diffs between different revisions. Y ou can aso download individua files but not entire directories.

Buildbot Snapshots

Recommended for development purposes, if direct Subversion access isn't possible (e.g. because of
arestrictive firewall).

Age: some number of minutes (a bit older than the anonymous Subversion access).

The buildbot server will automatically start to generate a snapshot of Wireshark's source tree after
a source code change is committed. These snapshots can be found at: http://www.wireshark.org/
downl oad/automated/src/.

If anonymous Subversion accessisn't possible, e.g. if the connection to the server isn't possible because
of acorporate firewall, the sources can be obtained by downloading the buildbot snapshots. However,
if you are going to maintain your sources in parallel to the "official" sources for some time, it's
recommended to use the anonymous Subversion access if possible (believe it, it will save you alot
of time).

Released sources

Recommended for productive purposes.
Age: from days to weeks.

The officially released source files can be found at: http://www.wireshark.org/download/. Y ou should
use these sources if you want to build Wireshark on your platform for productive use.

The differences between the released sources and the sources stored at the Subversion repository will
keep on growing until the next release is done (at the release time, the released and latest Subversion
repository versions are then identical again :-).

3.4. Update the Wireshark sources

After you've obtained the Wireshark sources for the first time, you might want to keep them in sync
with the sources at the Subversion repository.

Takealook at the buildbot first!

L1] As development evolves, the Wireshark sources are compilable most of the time - but
not always. Y ou may take alook at the Section 1.6, “ Automated Builds (Buildbot)” first,
to seeif the sources are currently in a good shape.

18

http://anonsvn.wireshark.org/viewvc/viewvc.cgi/
http://anonsvn.wireshark.org/viewvc/viewvc.cgi/
http://www.wireshark.org/download/automated/src/
http://www.wireshark.org/download/automated/src/
http://www.wireshark.org/download/

Work with the Wireshark sources

3.4.1.

3.4.2.

... with Anonymous Subversion access

After thefirst time checkout is done, updating your sourcesis simply done by typing (in the Wireshark
source dir):

$svn update

Thiswill only take afew seconds, even on aslow internet connection. It will replace old file versions
by new ones. If you and someone €lse have changed the same file since the last update, Subversion
will try to merge the changes into your private file (this works remarkably well).

... from zip files

Independent of the way you retrieve the zip file of the Wireshark sources (as described in Section 3.3
“Obtain the Wireshark sources’), the way to bring the changes from the official sources into your
personal sourcetreeisidentical.

First of all, you will download the new zip file of the official sourcesthe way you did it the first time.

If you haven't changed anything in the sources, you could simply throw away your old sources and
reinstall everything just like the first time. But be sure, that you really haven't changed anything. It
might be agood ideato simply renamethe "old" dir to have it around, just in case you remember later
that you really did change something before.

Well, if you did change something in your source tree, you have to merge the official changes since
the last update into your source tree. You will install the content of the zip file into a new directory
and use a good merge tool (e.g. http://winmerge.sourceforge.net/ for Win32) to bring your personal
source tree in sync with the official sources again.

3.5. Build Wireshark

3.5.1.

The sources contain several documentation files, it's agood ideato look at these files first.

So after obtaining the sources, tools and libraries, the first place to look at is doc/
READVE. devel oper , hereyou will get thelatest infosfor Wireshark development for all supported
platforms.

Tip!
L' | It isavery good idea, to first test your complete build environment (including running

and debugging Wireshark) before doing any changesto the source code (unless otherwise
noted).

The following steps for the first time generation differ on the two major platforms.
Unix
Run the autogen.sh script at the top-level wireshark directory to configure your build directory.

. [aut ogen. sh
.lconfigure
nmake

If you need to build with a non-standard configuration, you can use:

.lconfigure --help

19

http://winmerge.sourceforge.net/

Work with the Wireshark sources

3.5.2.

to see what options you have.

Win32 native

The first thing to do will be to check the file confi g. nnmake to determine if it reflects your
configuration. The settingsinthisfilearewell documented, so please have alook at that file. However,
if you'veinstalled the libraries and tools as recommended there should be no need to edit things here.

Many of the file and directory names used in the build process go past the old 8.3 naming limitations.
As aresult, you should use the cmd.exe command interpreter instead of the old command.com.

Be sure that your command-line environment is set up to compile and link with MSVC++. When
installing MSV C++, you can have your system's environment set up to always allow compiling from
the command line, or you can invoke the vevars32.bat script, which can usualy be found in the
VC98\ Bi n subdirectory of the directory in which Visual Studio wasinstalled.

Y ou should then cleanup any intermediate files, which are shipped for convenience of Unix users, by
typing at the command line prompt (cmd.exe):

>nmake -f Makefile. nnake distclean

After doing this, typing at the command line prompt (cmd.exe):
>nmake -f Makefile. nnake all

will start the whole Wireshark build process.

After thebuild process has successfully finished, you should find awi r eshar k. exe and some other
filesin theroot directory.

3.6. Run generated Wireshark

3.6.1.

3.6.2.

Tip!

L] An dready installed Wireshark may interfere with your newly generated version in
various ways. If you have any problems getting your Wireshark running the first time,
it might be a good idea to remove the previously installed version first.

Unix/Linux

After asuccessful build you can run Wireshark right from the build directory. Still the program would
need to know that it's being run from the build directory and not from its install location. This has
inpact on the directories where the program can find the other parts and relevant data files.

In order to run the Wireshark from the build directory set the environment variable
W RESHARK RUN_FROM BUI LD DI RECTORY and run Wireshark. If your platform is properly
setup, your build directory and current working directory are not in your PATH, so the commandline
to launch Wireshark would be: WIRESHARK_RUN_FROM_BUILD DIRECTORY=1 ./
wireshark.

There's no need to run Wireshark as root user, you just won't be able to capture. When you opt to run
Wireshark thisway, your terminal output can be informative when things don't work as expected.

Win32 native

During the build all relevant program files are collected in a subdirectory wireshark-gtk2. You can
run the program from there by launching the wireshark.exe executable.

20

Work with the Wireshark sources

3.7. Debug your generated Wireshark

3.7.1.

3.7.2.

Unix/Linux

When you want to investigate a problem with Wireshark you want to load the program into your
debugger. But loading wireshark into debugger fails because of the libtool build environment. You'll
have to wrap loading wireshark into a libtool command: libtool --mode=execute gdb wireshark

If you prefer a graphic debugger you can use the Data Display Debugger (ddd) instead of GNU
debugger (gdb).

Additional traps can be set on GLib by setting the G DEBUG environment

variableeG_DEBUG=fatal_criticals libtool --mode=execute ddd wireshark. See http:/
library.gnome.org/devel/glib/stable/glib-running.html

Win32 native

XXX - add moreinfo here.

3.8. Make changes to the Wireshark sources

As the Wireshark developers are working on many different platforms, a lot of editors are used to
develop Wireshark (emacs, vi, Microsoft Visual Studio and many many others). There'sno "standard"
or "default" development environment.

There are several reasons why you might want to change the Wireshark sources:
* add your own new dissector

 change/extend an existing dissector

 fix abug

» implement a new glorious feature :-)

Theinterna structure of the Wireshark sources will be described in Part 11, “Wireshark Devel opment
(incomplete)”.

Tip!

L] Ask the developer mailing list before you really start a
new devel opnent task. If you have anideawhat you want to add/change, it'sa
good ideato contact the developer mailing list (see Section 1.7.5, “Mailing Lists") and
explain your idea. Someone el se might already be working on the same topic, so double
effort can be reduced, or someone can give you some tips that should be thought about
(like side effects that are sometimes very hard to see).

3.9. Contribute your changes

If you have finished changing the Wireshark sources to suit your needs, you might want to contribute
your changes back to the Wireshark community. Y ou gain the following benefits by contributing your
improvements:

* It'stheright thing to do. Other people who find your contributions useful will appreciate them, and
you will know that you have helped people in the same way that the developers of Wireshark have
helped you.

21

http://library.gnome.org/devel/glib/stable/glib-running.html
http://library.gnome.org/devel/glib/stable/glib-running.html

Work with the Wireshark sources

3.9.1.

3.9.2.

 You get free enhancements. By making your code public, other developers have a chance to make
improvements, as there's always room for improvements. In addition someone may implement
advanced features on top of your code, which can be useful for yourself too.

* You save time and effort. The maintainers and developers of Wireshark will maintain your code
aswell, updating it when API changes or other changes are made, and generally keeping it in tune
with what is happening with Wireshark. So if Wireshark is updated (which is done often), you can
get anew Wireshark version from the website and your changes will already be included without
any effort for you.

There's no direct way to commit changes to the SVN repository. Only a few people are authorised to
actually make changesto the source code (check-in changed files). If you want to submit your changes,
you should make a diff file (a patch) and upload it to the bug tracker.

What is a diff file (a patch)?

A diff fileisaplain text file containing the differences between a pair of files (or a multiple of such
file pairs).

Tip!

(7] A diff fileis often also called a patch, as it can be used to patch an existing source file
or tree with changes from somewhere else.

The Wireshark community is using patches to transfer source code changes between the authors.
A patch is both readable by humans and (as it is specially formatted) by some dedicated tools.

Here is a small example of a patch for file.h tha makes the second argument in
cf _continue_tail () volatile. It was created using svn diff, described below:

Index: file.h

- file.h (revision 21134)
+++ file.h (revision 22401)
@-142,7 +142,7 @@
* @aramerr the error code, if an error had occurred
* @eturn one of cf_read_status_t
*/
-cf _read_status_t cf_continue_tail (capture_file *cf, int to_read, int *err)
+cf _read_status_t cf_continue_tail(capture_file *cf, volatile int to_read, int *err)

/**

* Finish reading from"end" of a capture file.

Theplussign at the start of alineindicatesan added line, aminussignindicates adel eted line compared
to the original sources.

We prefer to use so called "unified" diff filesin Wireshark devel opment, three unchanged lines before
and after the actual changed parts are included. This makes it much easier for a merge/patch tool to
find the right place(s) to change in the existing sources.

Generate a patch

There are several ways to generate patches. The preferred way is to generate them from an updated
Subversion tree, since it avoids unnecessary integration work.

3.9.2.1. Using the svn command-line client

svn diff [changed files] > svn.diff

22

http://en.wikipedia.org/wiki/Diff

Work with the Wireshark sources

Use the command line svn client to generate a patch in the required format from the changes you've
made to your working copy. If you leave out the name of the changed file the svn client searches for
all changes in the working copy and usually produces a patch containing more than just the change
you want to send. Therefore you should always check the produced patch file.

If you've added a new file, e.g. packet - mypr ot ocol . ¢, you can use svh add to add it to your
local tree before generating the patch. Similarly, you can use svn rm for filesthat should be removed.

3.9.2.2. Using the diff feature of the GUI Subversion clients

Most (if not all) of the GUI Subversion clients (RapidSVN, TortoiseSVN, ...) have a built-in "diff"
feature.

If you use TortoiseSVN:

TortoiseSVN (to be precise Subversion) keepstrack of the files you have changed in the directories it
controls, and will generatefor you aunified diff file compiling the differences. To do so - after updating
your sources from the SVN repository if needed - just right-click on the highest level directory and
choose "TortoiseSVN" -> "Create patch...". You will be asked for a name and then the diff file will
be created. The names of the files in the patch will be relative to the directory you have right-clicked
on, so it will need to be applied on that level too.

When you create the diff file, it will include any difference TortoiseSVN findsin filesin and under the
directory you have right-clicked on, and nothing else. This means that changes you might have made
for your specific configuration - like modifying conf i g. nnmake so that it uses your lib directory -
will aso beincluded, and you will need to remove these linesfrom the diff file. It also meansthat only
changes will be recorded, i.e. if you have created new files -say, a new packet - xxx. ¢ for anew
protocol dissector- it will not be included in the diff, you need to add it separately. And, of course,
if you have been working separately in two different patches, the .diff file will include both topics,
which is probably not a good idea.

3.9.2.3. Using the diff tool

A diff fileis generated, by comparing two files or directories between your own working copy and the
"official" sourcetree. Soto beableto do adiff, you should have two sourcetrees on your computer, one
with your working copy (containing your changes), and one with the "official" source tree (hopefully
the latest SVN files) from http://www.wireshark.org.

If you have only changed a single file, you could type something like this:
diff -r -u --strip-trailing-cr svn-file.c work-file.c > foo.diff

To get a diff file for your complete directory (including subdirectories), you could type something
likethis:

diff -N-r -u --strip-trailing-cr ./svn-dir ./working-dir > foo.diff

It'sagood ideato do anmake di st cl ean before the actual diff call, as this will remove alot of
temporary fileswhich might be otherwise included in the diff. After doing the diff, you should edit the
foo. di ff file and remove unnecessary things, like your private changes to the conf i g. nnake
file.

Table 3.1. Some useful diff options

Option Purpose

-N Add new files when used in conjunction with -r.
-r Recursively compare any subdirectories found.
-u Output unified context.

23

Work with the Wireshark sources

3.9.3.

3.9.4.

Option Purpose

--strip-trailing-cr Strip trailing carriage return on input. Thisis
useful for Win32

-X PAT Exclude files that match PAT. This could be
something like -x *.obj to exclude all win32
object files.

The diff tool has alot options; they can be listed with:

diff --help

Some tips for a good patch

Some tips that will make the merging of your changes into the SVN tree much more likely (and you
want exactly that, don't you :-):

» Usethelatest SVN sources, or alike. It'sagood ideato work with the same sources that are used
by the other developer's, this makes it usually much easier to apply your patch. For information
about the different ways to get the sources, see Section 3.3, “Obtain the Wireshark sources’.

» Update your SVN sources just before making a patch. For the same reasons as the previous
point.

* Do a"make clean" before generating the patch. This removes a lot of unneeded intermediate
files (like object files) which can confuse the diff tool generating alot of unneeded stuff which you
have to remove by hand from the patch again.

» Find agood descriptivefilenamefor your patch. Think amoment to find a proper name for your
patch file. Often afilename likewi r eshar k. di f f isused, which isn't really helpful if keeping
severa of these files and find the right one later. For example: If you want to commit changes to
the datatypes of dissector foo, agood filename might be: packet - f oo- dat at ypes. di ff.

« Don't put unrelated things into one large patch. A few smaller patches are usually easier to
apply (but also don't put every changed line into a separate patch :-).

» Remove any parts of the patch not related to the changes you want to submit. You can use a
text editor for this. A common example for win32 developers are the differences in your private
confi g. nmake file.

In general: making it easier to understand and apply your patch by one of the maintainers will make
it much more likely (and faster) that it will actually be applied.

Please remember: you don't pay the person "on the other side of the mail" for his/her effort applying
your patch!

Code Requirements

The core maintainers have done a lot of work fixing bugs and making code compile on the various
platforms Wireshark supports.

To ensure Wireshark's source code quality, and to reduce the workload of the core maintainers, there
are some things you should think about befor e submitting a patch.

ﬂ Warn!
Ignoring the code requirements will make it very likely that your patch will be
reected!

24

Work with the Wireshark sources

3.9.5.

» FollowtheWireshark sour cecodestyleguide. Just because something compilesonyour platform,
that doesn't mean it'll compile on all of the other platforms for which Wireshark is built. Wireshark
runs on many platforms, and can be compiled with anumber of different compilers. See Section 7.2
“Coding styleguides’ for details.

e Submit dissectors as built-in whenever possible. Developing a new dissector as a plugin is a
good idea because compiling is quicker, but it's best to convert dissectorsto the built-in style before
submitting for checkin. This reduces the number of files that must be installed with Wireshark and
ensures your dissector will be available on al platforms.

This is no hard-n-fast rule though. Many dissectors are straightforward so they can easily be put
into 'the big pile', while some are ASN.1 based which takes a different approach, and some multiple
sourcefile dissectors are more suitable to be placed separate as plugin.

» Verify that your dissector code does not use prohibited or deprecated APIs This can be done
asfollows:

perl <wireshark_root>/tool s/ checkAPls. pl <source-fil enanme(s)>

» Fuzztest your changes! Fuzz testingisavery effective way to automatically find alot of dissector
related bugs. You'll take a capture file containing packets affecting your dissector and the fuzz
test will randomly change bytes in this file, so that unusual code paths in your dissector are
checked. There are tools available to automatically do this on any number of input files, see: http:
[Iwiki.wireshark.org/FuzzTesting for details.

Sending your patch for inclusion

After generating apatch of your changes, you might want to have your changesincluded into the SYN
repository.

To submit a patch, open a new ticket in the Wireshark bug database at https.//bugs.wireshark.org/
bugzilla/enter_bug.cgi ?product=Wireshark. You must first create a bug, then attach your patch or
patches.

* Set the Product, Priority, and Severity as needed.

» Add aSummary and Description, and create abug using the Commit button. If your code has passed
fuzz testing, please say so in the description.

* Once the bug has been created, select Create a New Attachment and upload your patch or patches.
Set the review_for_checkin flag to 2. If you skip this step, your patch won't show up in the patch
request queue.

« If possible and applicable, attach a capture file that demonstrates your new feature or protocol.

» Don't set the bug's status to ASSIGNED and don't assign the bug to yourself--if you do the latter,
the core developers won't see the updates made to the bug.

Y ou might get one of the following responses to your patch request:
 Your patch is checked into the SVN repository. Congratul ations!

* You are asked to provide additional information, capture files, or other material. If you haven't
fuzzed your code, you may be asked to do so.

» Your patch is rejected. You should get a response with the reason for rejection. Common reasons
include not following the style guide, buggy or insecure code, and code that won't compile on other
platforms. In each case you'll have to fix each problem and upload another patch.

* You don't get any response to your patch. Possible reason: Don't worry, if your patch isin the bug
tracker, it won't get lost. But it may bethat all the core devel opers are busy (e.g., with their day jobs

25

http://wiki.wireshark.org/FuzzTesting
http://wiki.wireshark.org/FuzzTesting
https://bugs.wireshark.org/bugzilla/enter_bug.cgi?product=Wireshark
https://bugs.wireshark.org/bugzilla/enter_bug.cgi?product=Wireshark

Work with the Wireshark sources

or family or...) and haven't had time to look at your patch. If you're concerned, feel free to add a
comment to the patch or send an email to the devel oper'slist asking for status. But please be patient:
most if not al of usdo thisin our "spare" time.

3.10. Apply a patch from someone else

Sometimesyou need to apply apatchto your private sourcetree. M aybe because you want to try apatch
from someone on the devel oper mailing list, or you want to check your own patch before submitting.

E Warning!
If you have problems applying a patch, make sure the line endings (CR/NL) of the patch
and your source files match.

3.10.1. Using patch

Given the file new. di f f containing a unified diff, the right way to call the patch tool depends on
what the pathnamesin new. di f f ook like. If they're relative to the top-level source directory - for
example, if apatchto pr ef s. ¢ just haspr ef s. ¢ asthefile name - you'd run it as:

patch -p0 <new. diff

If they'rerelativeto ahigher-level directory, you'd replace O with the number of higher-level directories
in the path, eg. if the names are wi reshark. ori g/ prefs.c and w reshar k. m ne/
prefs. c,youdrunitwith:

patch -pl <new. diff

If they'rerelativeto asubdi r ect or y of thetop-level directory, you'd run patchint hat directory
and run it with - pO.

If you run it without - p at al, the patch tool flattens path names, so that if you have a patch file
with patchesto Makef i | e. amand wi r et ap/ Makefi | e. am it'll try to apply the first patch to
the top-level Makef i | e. amand then apply the wi r et ap/ Makef i | e. ampatch to the top-level
Makefi | e. amaswell.

At which position in the filesystem should the patch tool be called?

If the pathnames are relative to the top-level source directory, or to a directory above that directory,
you'd run it in the top-level source directory.

If they'rerelativetoasubdi r ect or y - for example, if somebody did apatch to " packet-ip.c” and ran
"diff" or "svn diff" in the "epan/dissectors’ directory - you'd run it in that subdirectory. It is preferred
that people NOT submit patcheslike that - especially if they're only patching filesthat exist in multiple
directories, such as Makefi | e. am

3.11. Add a new file to the Subversion
repository

The"usual" way to commit new filesisdescribed in Section 3.9, “ Contribute your changes’. However,
the following might be of interest for the "normal" developer as well.

4 Note!

&

S This action is only possible/allowed by the Wireshark core developers who have write
access to the Subversion repository. It isput in hereto have all information in one place.

26

Work with the Wireshark sources

If you (as a core developer) need to add a file to the SVN repository, then you need to perform the
following steps:

1. Add the Wireshark boilerplate to the new file(s).
2. Add aline to each new file containing the following text (case is important, so don't write ID or
id or iD):
$1 d$
3. Add the new file(s) to the repository:
$svn add new file
4. Set the line ending property to "native" for the new file(s):
$svn propset svn:eol-style native newfile
5. Set version keyword to "1d" for the new file(s):
$svn propset svn:keywords |Id new file
6. Commit your changes, including the added file(s).
$svn commit new file other_files_you nodified

Don't forget a brief description of the reason for the commit so other developers don't need to read
the diff in order to know what has changed.

3.12. Binary packaging

Delivering binary packages makesit much easier for the end-usersto install Wireshark on their target
system. This section will explain how the binary packages are made.

3.12.1. Debian: .deb packages

The Debian Package is built using dpkg-buildpackage, based on information found in the source tree
under debi an. See http://www.debian-administration.org/articles/336 for amorein-depth discussion
of the build process.

In the wireshark directory, type:
$ make debi an- package

to build the Debian Package.

3.12.2. Red Hat: .rpm packages

The RPM isbuilt using rpmbuild (http://Aww.rpm.org/), which comes as standard on many flavours of
Linux, including Red Hat and Fedora. The process createsaclean build environment in packagi ng/
r pmi BUI LD every time the RPM is built. The settings controlling the build are in packagi ng/
r pmi SPECS/ wi r eshar k. spec. i n. After editing the settings in thisfile, . / conf i gur e must
be run again in the wireshark directory to generate the actual specification script.

& Warn!
The SPEC file contains settings for the confi gur e used to set the RPM build
environment. These are completely independent of any settings passed to the usual
Wireshark . / confi gure.

27

http://www.debian-administration.org/articles/336

Work with the Wireshark sources

In the wireshark directory, type:
$ make rpm package

to build the RPM. Once it is done, there will be a message stating where the built RPM can be found.
Tip!

L] Because this does a clean build, as well as constructing the package, this can take quite
along time.

3.12.3. MAC OS X: .dmg packages

The MAC OS X Package is built using OS X packaging tools, based on information found in the
source tree under packagi ng/ macosx.

In the wireshark directory, type:
$ make osx- package

to build the MAC OS X Package.

3.12.4. Win32: NSIS .exe installer

The "Nullsoft Install System" is afreeinstaller generator for Win32 based systems; instructions how
to install it can be found in Section 4.17, “Win32: NSIS (optional)”. NSIS is script based, you will
find the Wireshark installer generation script at: packagi ng/ nsi s/ wi r eshar k. nsi .

You will probably have to modify the MAKENSIS setting in the conf i g. nnake file to specify
where the NSIS binaries are installed.

In the wireshark directory, type:
>nmake -f makefil e. nmake packagi ng

to build the installer.
Tip!

] Please be patient while the compression is done, it will take some time (afew minutes!)
even on fast machines.

If everything went well, you will now find something like: wi r eshar k- set up- 1. 9. exe inthe
packagi ng/ nsi s directory.

28

Chapter 4. Tool Reference

4.1. Introduction

This chapter will provide you with information about the various tools needed for Wireshark
development.

None of the tools mentioned in this chapter are needed to run Wireshark; they are only needed to
build it.

Most of these tools have their roots on UNIX like platforms, but Win32 ports are also available.
Therefore the tools are available in different "flavours':

* UNIX (or Win32 Cygwin): the tools should be commonly available on the supported UNIX
platforms, and for Win32 platforms by using the Cygwin UNIX emulation

» Win32 native: some tools are available as native Win32 tools, no special emulation is required

E Warning!
Unless you know exactly what you are doing, you should strictly follow the
recommendations given in Chapter 2, Quick Setup!

The following sections give a very brief description of what a particular tool is doing, how it is used
in the Wireshark project and how it can be installed and tested.

Don't expect a lot of documentation regarding these tools in this document. If you need further
documentation of a specific tool, you should find lot's of useful information on the web, as these tools
are commonly used. Y ou can also try to get help for the UNIX based toolswitht ool nane - - hel p
or read the manpage man t ool nane.

Y ou will find explanations of the tool usage for some of the specific development tasks in Chapter 3,
Work with the Wireshark sources.

4.2. Win32: Cygwin

Cygwin provides alot of UNIX based tools on the Win32 platform. It uses a UNIX emulation layer
which might be a bit slower compared to the native Win32 tools, but at an acceptable level. The
installation and update is pretty easy and done through a single (web based) setup.exe.

The native Win32 tools will typically be a bit faster, but more complicated to install, as you would
have to download the tools from different webpages, and install them in different ways, tweaking the
PATH and alike.

ﬁ Note!

&

S Asthere'sno Win32 native bash version available, at least a basic installation of cygwin
isrequired in any case.

Although Cygwin consists of several separate packages, the installation and update is done through a
single setup.exe, which acts similar to other web based installers. All tools will be installed into one
base folder, the default isC: \ cygwi n.

Y ou will find this network based setup.exe at: http://www.cygwin.com/. Click on one of the "Install
Cygwin now" appearances to download the set up. exe. After the download completed, start this
set up. exe onyour machine.

29

http://www.cygwin.com/

Tool Reference

The setup will ask you for some settings, the defaults should usually work well for afirst start. At
the "Select Packages' page, you'll need to select some additional packages, which are not installed
by default. Navigate to the required Category/Package row and click on the "Skip" item in the "New"
column so it shows a version number for the required package

After clicking the Next button several times, the setup will then download and install the selected
packages (this may take a while, depending on the package size).

Under: " Start#Programs#Cygwin#Cygwin Bash Shell" you should now be able to start anew Cygwin

bash shell, which is similar to the command line (command.com/cmd.exe) in Win32, but much more
powerful.

4.2.1. Add/Update/Remove Cygwin Packages

If you want to add additional, updateinstalled or remove packages|ater, you haveto start the setup.exe
again. At the "Select Packages' page, the entry in the "New" column will control what is done (or
not) with the package. If a new version of a package is available, the new version number will be
displayed, so it will be automatically updated. Y ou can change the current setting by simply clicking
at it, it will change between:

 aspecific version number - this different package version will be installed

» Skip - not installed, no changes

» Keep - already installed, no changes

» Uninstall - uninstall this package

e Reinstall - reinstall this package

4.3. GNU compiler toolchain (UNIX or Win32
Cygwin)

4.3.1. gcc (GNU compiler collection)
E Win32: Warn!
Using Cygwin gcc to compile Wireshark is "EXPERT ONLY" and therefore NOT

recommended. If you really want to try it anyway, see: http://wiki.wireshark.org/
Devel opment/CygwinGCC for some details!

The GCC C compiler is available for most of the UNIX-like platforms and as the Devel/gcc package
from the Cygwin setup.

If GCC isn't already installed or available as a package for your platform, you can get it at: http:/
gcc.gnu.org/.

After correct installation, typing at the bash command line prompt:
$gcc --version

should result in something like:

gcc (GCCO) 3.4.4 (cygwin special) (gdc 0.12, using dnd 0.125)
Copyright (C) 2004 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO

30

http://wiki.wireshark.org/Development/CygwinGCC
http://wiki.wireshark.org/Development/CygwinGCC
http://gcc.gnu.org/
http://gcc.gnu.org/

Tool Reference

4.3.2.

4.3.3.

4.3.4.

warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE.

However, the version string may vary.

gdb (GNU project debugger)

GDB is the debugger for the GCC compiler. It is available for many (if not all) UNIX-like platforms
and as the Devel/gdb package from the Cygwin setup

If you don't like debugging using the command line, there are some GUI frontends for it available,
most notably GNU DDD.

If gdb isn't already installed or available as a package for your platform, you can get it at: http:/
www.gnu.org/software/gdb/gdb.html.

After correct installation:
$gdb --version

should result in something like:

G\U gdb 6.5.50.20060706-cvs (cygw n-speci al)

Copyright 2003 Free Software Foundation, |nc.

GDB is free software, covered by the GNU General Public License, and you are
wel come to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-cygw n".

However, the version string may vary.

ddd (GNU Data Display Debugger)

The GNU Data Display Debugger is agood GUI frontend for GDB (and alot of other command line
debuggers), so you have to install GDB first. It is available for many UNIX-like platforms and as the
ddd package from the Cygwin setup.

If GNU DDD isn't already installed or available as a package for your platform, you can get it at: http:
[lwww.gnu.org/software/ddd/.

make (GNU Make)

ﬁ Win32 Note!

&

. Although some effort is made to use make from the Cygwin environment, the mainline
isdtill using Microsoft Visual Studio's nmake.

GNU Make is available for most of the UNIX-like platforms and also as the Devel/make package
from the Cygwin setup.

If GNU Makeisn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.gnu.org/software/make/.

After correct installation:
$ make --version

should result in something like:

31

http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/

Tool Reference

4.4.1.

G\NU Make 3.81

Copyright (C) 2006 Free Software Foundati on,

This is free software;
There is NO warranty;
PARTI CULAR PURPCSE.

I nc.

see the source for copying conditions.

However, the version string may vary.

4.4. Microsoft compiler toolchain (Win32
native)

not even for MERCHANTABI LI TY or FI TNESS FOR A

To compile Wireshark on Windows using the Microsoft C/C++ compiler, you'll need:

1. Ccompiler (cl . exe)

2. Linker (1'i nk. exe)

3. Make (nnake. exe)

4. Cruntime headers and libraries (e.g. st di 0. h,

nsvcrt.lib)

5. Windows platform headers and libraries (e.g. Wi ndows. h, WSock32. i b)

6. HTML help headers and libraries (ht m hel p. h,

Toolchain Package Alternatives

ht M hel p. i b)

The official Wireshark 1.6.x and 1.4.x releases are compiled using Microsoft Visual C++ 2008 SP1.
(The no longer supported 1.2.x release was also compiled with Microsoft Visua C++ 2008 SP1).
Other past releases, including the 1.0 branch, were compiled using Microsoft Visual C++ 6.0. Using
therelease compilersis recommended for Wireshark development work. "Express Edition" compilers
such as Visual C++ 2008 Express Edition SP1 can be used but any PortableApps or U3 packages you
create will require the installation of a separate Visual C++ Redistributable package. See“ C-Runtime
"Redistributable” Files’ below for more details.

However, you might already have a different Microsoft C++ compiler installed. It should be possible
to use any of the following with the considerations listed:

Xx86. exe

Compiler IDE /{Publicly Platform config.nmakerset compiler | Remarks
Package Debugger? |available? |SDK PATH and
required? |MSVC_VARIAMNE settings
with:
Visual Yes Commercial |No? MSVC2005 |Microsoft |-
Studio 2005 ! Visual
Studio 8\WVC
\bin
\vcvars32.bat
Visual Cl|Yes Free Free MSVC2005EBMicrosoft |vcredi st
++ 2005 Download |Download Visual
Express (link (link Studio 8\VC
Edition disappeared) | disappeared) \bin
\vcvars32.bat
Visual Yes Commercial |No?2 MSVC2008 |Microsoft |-
Studio 2008 Visual
Studio

32

Tool Reference

4.4.2.

9.0\VC\bin
\vevars32.bat
Visual C|Yes Free No ? MSVC2008ERMicrosoft |vcredi st_x86. exe
++ 2008 Download Visual 8
Express Studio
Edition SP1 9.0\VC\bin
\vevars32.bat
Visual Yes Commercial |No? MSVC2010 |Microsoft |-
Studio 2010 Visual
Studio
9.0\VC\bin
\vcvars32.bat
Visual C|Yes Free No ? MSVC2010EBMicrosoft |vcredi st _x86. exe,
++ 2010 Download Visual vcredi st _x64. exe
Express Studio
Edition 10.0\vC
\vcvarsall.bat"
(recommended) X86
.NET No Free Free DOTNET20 |Microsoft.NE[Wcr edi st _x86. exe
Framework Download |Download \SDK
2.0 SDK * (link (link \W2.0\Bin
disappeared) | disappeared) \sdkvars.bat

o longer officially available, might still be available through the MSDN subscriptions

%as the Platform SDK is aready integrated in the package, you obviously don't need to install it and
don't even need to call a separate environment setting batch file for the Platform SDK!

Sver edi st _x86.exe (3MB free download) is required to build Wreshark-
wi n32-1.9.x.exe, and vcredist_x64.exe is required to build Wreshark-
Wi n64- 1. 9. x. exe, Theversionof vcr edi st _x86. exeorvcr edi st _x64. exe must match
the version for your compiler, including any service packs installed for the compiler.

4MSDN remarksthat the corresponding .NET runtimeisrequired. It's currently unclear if the runtime
needs to be installed for the C compiler to work - or is this only needed to compile / run .NET
programs?! ?

Legal issues with MSVC > V6?

Please note: The following is not legal advice - ask your preferred lawyer instead! It's the authors
view, but this view might be wrong!

The myriad of Win32 support lib port projects all seem to believe there are legal issues involved in
using newer versions of Visual Studio. This FUD essentially stems from two misconceptions:

1. Unfortunately, it is believed by many that the Microsoft Visual Studio 2003 EULA explicitly
forbids linking with GPL'ed programs. This belief is probably due to an improper interpretation of
the Visual Studio 2003 Toolkit EULA, which places redistribution restrictions only on SOURCE
CODE SAMPLES which accompany the toolkit.

2. Other maintainers believe that the GPL itself forbids using Visual Studio 2003, since one of the
required support libraries (MSVCR71.DLL) does not ship with the Windows operating system.
Thisis also awrongful interpretation, and the GPL FAQ explicitly addresses this issue.

Similar appliesto Visual Studio 2005 and alike.

So in effect it should be perfectly legal to compile Wireshark and distribute / run it if it was compiled
with any MSVC version > V6!

33

http://www.microsoft.com/download/details.aspx?id=14597
http://www.microsoft.com/download/details.aspx?id=14597
http://www.microsoft.com/express/Downloads/#Visual_Studio_2010_Express_Downloads
http://www.microsoft.com/express/Downloads/#Visual_Studio_2010_Express_Downloads
http://anonsvn.wireshark.org/wireshark-win32-libs/tags/
http://msdn.microsoft.com/visualc/vctoolkit2003/eula.aspx
http://www.gnu.org/licenses/gpl-faq.html#WindowsRuntimeAndGPL

Tool Reference

4.4.3.

4.4.4.

cl.exe (C Compiler)

The following table gives an overview of the possible Microsoft toolchain variants and their specific
C compiler versions "ordered by release date":

Compiler Package cl.exe | MSC VER |CRTDLL
Visual Studio 2005

Visual C++ 2005 Express Edition
NET Framework 2.0 SDK 8.0 1400 msvcr80.dil

Windows SDK for Windows Vista and .NET
Framework 3.0 Runtime Components

Visual Studio 2008
Visual Studio 2008 Express Edition
Visual Studio 2010
Visual Studio 2010 Express Edition

9.0 1500 msvcr90.dl

10.0 1600 msvcr100.dil

After correct installation of the toolchain, typing at the command line prompt (cmd.exe):
>cl

should result in something like:

M crosoft (R) 32-bit C/ C++ Optim zing Conpiler Version 15.00.30729.01 for 80x86
Copyright (C Mcrosoft Corp. Al rights reserved.

usage: cl [option...] filenane... [/link linkoption...

However, the version string may vary.

nmake.exe (Make)

nmake is part of the toolchain packages described above.

Instead of using the workspace (.dsw) and projects (.dsp) files, the traditional nmake makefiles are
used. This has one main reason: it makes it much easier to maintain changes simultaneously with
the GCC toolchain makefile.am files as both file formats are similar. However, as no Visual Studio
workspace/project files are available, this makes it hard to use the Visual Studio IDE e.g. for using
the integrated debugging feature.

After correct installation, typing at the command line prompt (cmd.exe):
> nmake

should result in something like:

M crosoft (R) Program Maintenance Utility Version 6.00.9782.0
Copyright (C) Mcrosoft Corp 1988-1998. Al rights reserved.

NMAKE : fatal error Ul064: MAKEFI LE not found and no target specified
St op.

However, the version string may vary.

Documentation on nmake can be found at _Microsoft MSDN

34

http://msdn2.microsoft.com/library/dd9y37ha(VS.71).aspx

Tool Reference

4.4.5.

4.4.6.

link.exe (Linker)

XXX - add info here

C-Runtime "Redistributable" Files

Please note: The following is not legal advice - ask your preferred lawyer instead! It's the authors
view, but this view might be wrong!

Depending on the Microsoft compiler version you use, some binary files coming from Microsoft
might be required to be installed on Windows machine to run Wireshark. On a developer machine,
the compiler setup installs these files so they are available - but they might not be available on a user
machine!

This is especially true for the C runtime DLL (msvcr*.dil), which contains the implementation of
ANSI and alike functions, e.g.: fopen(), malloc(). The DLL is named like: msver<version>.dll, an
abbreviation for "MicroSoft Visual C Runtime". For Wireshark to work, this DLL must be available
on the users machine.

Starting with MSVC7, it is necessary to ship the C runtime DLL (msvcr<version>.dll) together with
the application installer somehow, asthat DLL is possibly not available on the target system.

4 Notel

&

. Thefiles to redistribute must be mentioned in the redist.txt file of the compiler package
- otherwise it can't be legally redistributed by third parties like us!

The following MSDN links are recommended for the interested reader:

e "Redistributing Visual C++ Files'

» "How to: Deploy using XCopy"

» "Redistribution of the shared C runtime component in Visual C++ 2005 and in Visual C++ .NET"

In all cases where ver edi st _x86. exe or ver edi st _x64. exe is downloaded, it should be
downloaded to the directory into which the support libraries for Wireshark have been downloaded and
installed. This directory is specified by the WIRESHARK_LIB_DIR settingintheconf i g. nmake
file; by default itisC: \ wi r eshar k- wi n32-1 i bs. It need not, and should not, be run after being
downl oaded.

4.4.6.1. msvcr80.dll / vcredist_x86.exe - Version 8.0 (2005)

There are three redistribution methods that MSDN mentions for MSVC 8 (see: "_Choosing a
Deployment Method"):

1. "Redistributable Merge Modules' (kind of loadable modules for building msi installers - not
suitable for Wireshark's NSIS based installer)

2. copy thefolder content of Microsoft.V C80.CRT tothetarget directory (e.g.C. \ ProgramFi | es
\ Wr eshar k)

3. vcredi st _x86. exe (needsto be executed on the target machine - MSDN recommends thisfor
the 2005 Express Editions)

To save ingtaller size, MSVC2005 uses the content of Microsoft.VC80.CRT (method 2 -
this is the smallest package). As MSVC2005EE and DOTNET20 doesn't provide the folder
"Microsoft.VC80.CRT" they use method 3. You'll have to download avcr edi st _x86. exe from

35

http://msdn2.microsoft.com/library/ms235299(VS.80).aspx
http://msdn2.microsoft.com/library/ms235291(VS.80).aspx
http://support.microsoft.com/?scid=kb%3Ben-us%3B326922&x=10&y=13
http://msdn.microsoft.com/library/ms235316(VS.80).aspx
http://msdn.microsoft.com/library/ms235316(VS.80).aspx

Tool Reference

Microsoft that matches your compiler version. The best way to determine this version is to open one
of the generated manifest files (e.g. wi r eshar k. exe. nmani f est) and look for the version of the
Microsoft.V C80.CRT entry.

For 32-bit builds using Microsoft Visual C++ 2005, and probably Microsoft Visual C++ 2005
Express Edition without Service Pack 1, you need 8.0.50608.0, from: "Microsoft Visual C++ 2005
Redistributable Package (x86)": http://www.microsoft.com/downl oad/detail s.aspx?d=3387.

For 64-bit x86 (x64) builds using Microsoft Visual C++ 2005, and probably Microsoft Visual C++
2005 Express Edition without Service Pack 1, you need {fill thisin}, from: "Microsoft Visual C++
2005 Redistributable Package (x64)": http://www.microsoft.com/download/details.aspx?id=21254.

For IA-64 builds using Microsoft Visual C++ 2005, and probably Microsoft Visual C++ 2005
Express Edition without Service Pack 1, you need {fill thisin}, from: "Microsoft Visual C++ 2005
Redistributable Package (1A64)": http://www.microsoft.com/downl oad/detail s.aspx 7 d=16326.

For 32-bit builds using Microsoft Visual C++ 2005 Express Edition with Service Pack 1, you
need 8.0.50727.762, from: "Microsoft Visual C++ 2005 SP1 Redistributable Package (x86)": http:
[Iwww.microsoft.com/downl oad/detail s.aspx 71 d=5638.

For 64-bit x86 builds using Microsoft Visual C++ 2005 Express Edition with Service Pack 1, you
need {fill thisin}, from: "Microsoft Visua C++ 2005 SP1 Redistributable Package (x64)": http://
www.microsoft.com/downl oad/details.aspx 71 d=18471.

Please report to the developer mailing list, if you find a different version number!

4.4.6.2. msvcer90.dll / veredist_x86.exe / veredist_x64.exe -

Version

9.0 (2008)

For Microsoft Visual C++ 2008 (MSVC 9), only method 3 is used. There are both 32-bit and 64-bit
versions of the redistributables.

For 32-bit builds using Microsoft Visual C++ 2008 without Service Pack 1, you need 9.0.21022.8,
from: "Microsoft Visual C++ 2008 Redistributable Package (x86)": http://www.microsoft.com/
download/detail s.aspx?d=29.

For 64-bit builds using Microsoft Visual C++ 2008 without Service Pack 1, you need 9.0.21022.8,
from: "Microsoft Visual C++ 2008 Redistributable Package (x64)": http://www.microsoft.com/
download/details.aspx?id=15336.

For 32-bit builds with Microsoft Visual C++ 2008 with Service Pack 1, you need 9.0.30729.17,
from: "Microsoft Visual C++ 2008 SP1 Redistributable Package (x86)": http://www.microsoft.com/
download/details.aspx?d=5582.

For 64-bit builds with Microsoft Visual C++ 2008 with Service Pack 1, you need 9.0.30729.17,
from: "Microsoft Visual C++ 2008 SP1 Redistributable Package (x64)": http://www.microsoft.com/
download/details.aspx 7 d=2092.

Please report to the developer mailing list, if you find a different version number!

4.4.6.3. msvcerl00.dll / veredist_x86.exe / vecredist_x64.exe -
Version 10.0 (2010)

For Microsoft Visual C++ 2010 (MSVC 10), only method 3 is used. There are both 32-bit and 64-
bit versions of the redistributables.

* For 32-bit builds using Microsoft Visual C++ 2010 without Service Pack 1, you need 10.0.30319.1,

from: "Microsoft Visual C++ 2010 Redistributable Package (x86)": http://www.microsoft.com/
downl oad/en/details.aspx i d=5555.

36

http://www.microsoft.com/download/details.aspx?id=3387
http://www.microsoft.com/download/details.aspx?id=21254
http://www.microsoft.com/download/details.aspx?id=16326
http://www.microsoft.com/download/details.aspx?id=5638
http://www.microsoft.com/download/details.aspx?id=5638
http://www.microsoft.com/download/details.aspx?id=18471
http://www.microsoft.com/download/details.aspx?id=18471
http://www.microsoft.com/download/details.aspx?id=29
http://www.microsoft.com/download/details.aspx?id=29
http://www.microsoft.com/download/details.aspx?id=15336
http://www.microsoft.com/download/details.aspx?id=15336
http://www.microsoft.com/download/details.aspx?id=5582
http://www.microsoft.com/download/details.aspx?id=5582
http://www.microsoft.com/download/details.aspx?id=2092
http://www.microsoft.com/download/details.aspx?id=2092
http://www.microsoft.com/download/en/details.aspx?id=5555
http://www.microsoft.com/download/en/details.aspx?id=5555

Tool Reference

* For 64-bit builds using Microsoft Visual C++ 2010 without Service Pack 1, you need 10.0.30319.1,
from: "Microsoft Visual C++ 2010 Redistributable Package (x64)": http://www.microsoft.com/
download/details.aspx?d=14632.

 For 32-bit builds using Microsoft Visual C++ 2010 with Service Pack 1, you need 10.0.40219.1,
from: "Microsoft Visual C++ 2010 SP1 Redistributable Package (x86)": http://www.microsoft.com/
download/en/detail s.aspx 71 d=8328.

* For 64-bit builds using Microsoft Visual C++ 2010 with Service Pack 1, you need 10.0.40219.1,
from: "Microsoft Visual C++ 2010 SP1 Redistributable Package (x64)": http://www.microsoft.com/
download/details.aspx?d=13523.

Please report to the devel oper mailing list, if you find a different version number!

4.4.7. Windows (Platform) SDK

The Windows Platform SDK (PSDK) is a free (as in beer) download and contains platform specific
headers and libraries (e.g. windows.h, WSock32.lib, ...). As new Windows features evolve in time,
updated PSDK's become availabl e that include new and updated API's.

When you purchase a commercial Visual Studio, it will include a PSDK. The free (as in beer)
downloadable C compiler versions (V C++ 2005 Express, .NET Framework, ...) do not contain aPSDK
- you'll need to download a PSDK in order to have the required C header files and libraries.

Older Versions of the Platform SDK should also work. However, the command to set the environment
settings will be different, try search for SetEnv.* in the SDK directory.

BTW: "Windows SDK" seems to be the new name of the Platform SDK for Vista. The current SDK
name is misleading: "Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components" - trand ated this means. the Windows SDK for Windows Vista
and Platforms (like WinXP) that have the .NET 3.0 runtime installed.

4.4.8. HTML Help

The HTML Help is used to create the User's and Developer's Guide in .chm format and to show the
User's Guide as the Wireshark "Online Help".

Both features are currently optional, but might be mandatory in future versions.

4.4.8.1. HTML Help Compiler (hhc.exe)

This compiler is used to generate a .chm file from a bunch of HTML files - in our case to generate
the User's and Developer's Guide in .chm format.

The compiler isonly available asthefree (asin beer) "HTML Help Workshop" download. If you want
to compile the guides yourself, you need to download and install this. If you don't install it into the
default directory, you may also have alook at the HHC_DIR setting in the file docbook/Makefile.

4.4.8.2. HTML Help Build Files (htmlhelp.c / htmlhelp.lib)

The files htmlhelp.c and htmlhelp.lib are required to be able to open .chm files from Wireshark - to
show the "online help".

Both files are part of the Platform SDK (standalone PSDK or MSV C since 2002). If you still use
MSVC 6, you can get them from the "HTML Help Workshop" mentioned above.

The related settings in config.nmake depend on the MSV C variant you use:

« MSVCG6: if the"HTML Help Workshop" isinstalled, set HHC DIR toitsdirectory

37

http://www.microsoft.com/download/details.aspx?id=14632
http://www.microsoft.com/download/details.aspx?id=14632
http://www.microsoft.com/download/en/details.aspx?id=8328
http://www.microsoft.com/download/en/details.aspx?id=8328
http://www.microsoft.com/download/details.aspx?id=13523
http://www.microsoft.com/download/details.aspx?id=13523

Tool Reference

4.4.9.

* >MSVC 6: set HHC DIR to useit (the actual value doesn't matter in this case)

Debugger

WEell, using agood debugger can save you alot of development time.

The debugger you use must match the C compiler Wireshark was compiled with, otherwise the
debugger will simply fail or you will only see alot of garbage.

4.4.9.1. Visual Studio integrated debugger

You can use the integrated debugger of Visual Studio - only available in some of the toolchain
packages.

However, setting up the environment is a hit tricky, as the Win32 build process is using makefiles
instead of the .dsp/.dsw files usually used.

XXX - add instructions how to do it.

4.4.9.2. Debugging Tools for Windows

Y ou could also use the Microsoft Debugging Tools for Windows toolkit, which is a standalone GUI
debugger. Although it's not that comfortable compared to debugging with the Visual Studio integrated
debugger, it can be helpful if you have to debug on a machine where an integrated debugger is not
available.

You can get it free of charge at: http://www.microsoft.com/whdc/devtool s'’debugging/default. mspx
(aslinks to Microsoft pages change from time to time, search for "Debugging Tools" at their page if
thislink should be outdated).

4.5. bash

4.5.1.

4.5.2.

The bash shell is needed to run several shell scripts.

UNIX or Win32 Cygwin: GNU bash

The bash shell is available for most of the UNIX-like platforms and as the bash package from the
Cygwin setup.

If bash isn't aready installed or available as a package for your platform, you can get it at: http:/
www.gnu.org/software/bash/bash.html.

After correct installation, typing at the bash command line prompt:
$ bash --version

should result in something like:

G\U bash, version 3.1.17(6)-rel ease (i 686-pc-cygw n)
Copyright (C) 2005 Free Software Foundation, Inc.

However, the version string may vary.

Win32 native: -

The authors don't know of any working Win32 native bash implementation.

38

http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.gnu.org/software/bash/bash.html
http://www.gnu.org/software/bash/bash.html

Tool Reference

4.6. python

4.6.1.

4.6.2.

Python is an interpreter based programming language. The homepage of the python project is: http://
python.org/. Python is used to generate some source files. Python 2.4 to 2.7 should work fine.

UNIX or Win32 Cygwin: python

Python is available for most of the UNIX-like platforms and as the python package from the Cygwin
setup

If Python isn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.python.org/.

After correct installation, typing at the bash command line prompt:
$ python -V

should result in something like:

Python 2.4.3

However, the version string may vary.

Win32 native: python

Get Python 2.7, 2.6, 2.5, or 2.4 from http://python.org/download/. Y ou can download an installation
package there, which will install the Python system in the top level of your C: drive by default, e.g.
C:\ Pyt hon27.

Y ou can check for a successful installation from a command prompt (cmd.exe):
C.\>cd pyt hon27
C.\ Pyt hon27>pyt hon -V

The output should look something like:
Pyt hon 2.7

However, the version string may vary.

4.7. perl

4.7.1.

Perl is an interpreter based programming language. The homepage of the perl project is: http://
www.perl.com. Perl is used to convert various text files into usable source code. Perl version 5.6 and
above should be working fine.

UNIX or Win32 Cygwin: perl

Perl isavailable for most of the UNIX-like platforms and as the perl package from the Cygwin setup.

If perl isn't dready installed or available as a package for your platform, you can get it at: http:/
www.perl.com/.

After correct installation, typing at the bash command line prompt:

$perl --version

39

http://python.org/
http://python.org/
http://www.python.org/
http://www.python.org/
http://python.org/download/
http://www.perl.com
http://www.perl.com
http://www.perl.com/
http://www.perl.com/

Tool Reference

4.7.2.

should result in something like:

This is perl, v5.8.7 built for cygw n-thread-nulti-64int
(with 1 registered patch, see perl -V for nore detail)
Copyright 1987-2005, Larry \Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Conpl et e docunentation for Perl, including FAQIlists, should be found on
this systemusing “nman perl' or “perldoc perl'. |f you have access to the
Internet, point your browser at http://ww.perl.com, the Perl Hone Page.

However, the version string may vary.

Win32 native: perl

A native Win32 perl package can be obtained from http://www.ActiveState.com. The installation
should be straightforward.

After correct installation, typing at the command line prompt (cmd.exe):
>perl -v

should result in something like:

This is perl, v5.8.0 built for MSWn32-x86-nulti-thread
(with 1 registered patch, see perl -V for nore detail)

Copyright 1987-2002, Larry \Wall

Bi nary build 805 provided by ActiveState Corp. http://wwmv. ActiveState.com
Built 18:08:02 Feb 4 2003

However, the version string may vary.

4.8. sed

4.8.1.

Sed it the streaming editor. It makes it easy for example to replace specially marked texts inside a
source code file. The Wireshark build process uses this to stamp version strings into various places.

UNIX or Win32 Cygwin: sed

Sed is available for most of the UNIX-like platforms and as the sed package from the Cygwin setup.

If sed isn't already installed or available as a package for your platform, you can get it at: http:/
directory.fsf.org/GNU/sed.html

After correct installation, typing at the bash command line prompt:
$sed --version

should result in something like:

G\U sed version 4.1.5

Copyright (C 2003 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE,

40

http://www.ActiveState.com
http://directory.fsf.org/GNU/sed.html
http://directory.fsf.org/GNU/sed.html

Tool Reference

4.8.2.

to the extent permitted by | aw.

However, the version string may vary.

Win32 native: sed

A native Win32 sed package can be obtained from http://gnuwin32.sourceforge.net/. The installation
should be straightforward.

4.9. yacc (bison)

4.9.1.

4.9.2.

Bison is a free implementation of yacc.

UNIX or Win32 Cygwin: bison

Bison is available for most of the UNIX-like platforms and as the bison package from the Cygwin
setup.

If GNU Bisonisn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.gnu.org/software/bison/bison.html.

After correct installation, typing at the bash command line prompt:
$ bi son --version

should result in something like:

bi son (G\U Bi son) 2.3
Witten by Robert Corbett and R chard Stall man.

Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE.

However, the version string may vary.

Win32 native: bison

A native Win32 yacc/bison package can be obtained from http://gnuwin32.sourceforge.net/. The
installation should be straightforward.

4.10. flex

Flex is afree implementation of lexx.

4.10.1. UNIX or Win32 Cygwin: flex

Flex isavailable for most of the UNIX-like platforms and as the flex package from the Cygwin setup.

If GNU flex isn't dready installed or available as a package for your platform, you can get it at: http:
[Iwww.gnu.org/software/flex/.

After correct installation, typing at the bash command line prompt:
$flex --version

should result in something like:

41

http://gnuwin32.sourceforge.net/
http://www.gnu.org/software/bison/bison.html
http://www.gnu.org/software/bison/bison.html
http://gnuwin32.sourceforge.net/
http://www.gnu.org/software/flex/
http://www.gnu.org/software/flex/

Tool Reference

flex version 2.5.4

However, the version string may vary.

4.10.2. Win32 native: flex

A native Win32 lexx/flex package can be obtained from http://gnuwin32.sourceforge.net/. The
installation should be straightforward.

4.11. Subversion (SVN) client (optional)

The Wireshark project uses its own Subversion (or short SVN) server to keep track of al the changes
done to the source code. Details about the usage of Subversion in the Wireshark project can be found
in Section 3.2, “ The Wireshark Subversion repository”.

If you want to work with the source code and are planning to commit your changes back to the
Wireshark community, it isrecommended to useaSV N client to get the latest sourcefiles. For detailed
information about the different ways to obtain the Wireshark sources, see Section 3.3, “Obtain the
Wireshark sources’.

Y ou will find more instructions in Section 3.3.1, “Anonymous Subversion access’ on how to use the
Subversion client.

4.11.1. UNIX or Win32 Cygwin: svn

SVN isavailablefor most of the UNIX-like platforms and as the Subversion package from the Cygwin
setup

If Subversionisn't already installed or available as a package for your platform, you can get it at: http:
[[subversion.tigris.org/ (together with the server software).

After correct installation, typing at the bash command line prompt:
$svn --version

should result in something like:

svn, version 1.0.5 (r9954)
conpi | ed Jun 20 2004, 23:28:30
Copyright (C) 2000-2004 Col |l abNet.

Subversion i s open source software, see http://subversion.tigris.org/
This product includes software devel oped by Col |l abNet (http://wwmv Collab. Net/)

However, the version string may vary.

4.11.2. Win32 native: svn

The Subversion command line tools for Win32 can be found at: http://subversion.tigris.org/. Thiswill
come with both client and server software - only the client software will be used.

After correct installation, typing at the command line prompt (cmd.exe):
>svn --version

should result in something like:

42

http://gnuwin32.sourceforge.net/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/

Tool Reference

svn, Version 1.4.0 (r21228)

Copyright (C) 2000-2006 Col | abNet .

However, the version string may vary.

4.12. Subversion (SVN) GUI client (optional)

Along with the traditional command-line client, several GUI clients are available for a number of
platforms, see http://subversion.tigris.org/project_links.html.

2 Keep Subversion program versionsin sync!

If you are working with both command line and GUI clients, keep the Subversion
program versionsin sync, at least the major/minor versions (e.g. 1.4).

4.12.1. UNIX or Win32 Cygwin: rapidSVN,
subcommander

RapidSVN is a cross platform Subversion frontend based on wxWidgets. It can be found at: http://
rapidsvn.tigris.org/. Subcommander is another cross platform Subversion frontend. It can be found at:
http://subcommander.tigris.org/.

Cygwin doesn't provide any GUI client for Subversion.

4.12.2. Win32 native:; TortoiseSVN

A good Subversion client for Win32 can be found at: http://tortoisesvn.tigris.org/. It will nicely
integrate into the Windows Explorer window.

4.13. diff (optional)

Diff is used to get afile of all differences between two source files/trees (sometimes called a patch).
The diff tool isn't needed for building Wireshark, but it's needed if you are going to commit your
changes back to the Wireshark community.

ﬁ Notel
}_ The recommended way to build patches is using the Subversion client, see Section 4.11
“Subversion (SVN) client (optional)” for details.

You will find more instructions in Section 3.9.2.3, “Using the diff tool” on how to use the diff tool.

4.13.1. UNIX or Win32 Cygwin: GNU diff

Diff is available for most of the UNIX-like platforms and as the diffutils package from the Cygwin
setup.

If GNU diff isn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.gnu.org/software/diffutils/diffutils.html.

After correct installation, typing at the bash command line prompt:

$diff --version

43

http://subversion.tigris.org/project_links.html
http://rapidsvn.tigris.org/
http://rapidsvn.tigris.org/
http://subcommander.tigris.org/
http://tortoisesvn.tigris.org/
http://www.gnu.org/software/diffutils/diffutils.html
http://www.gnu.org/software/diffutils/diffutils.html

Tool Reference

should result in something like:

diff (G\Udiffutils) 2.8.7
Witten by Paul Eggert, Mke Haertel, David Hayes,
Richard Stallman, and Len Tower.

Copyright (C) 2004 Free Software Foundation, |nc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FI TNESS FOR A PARTI CULAR PURPOSE.

However, the version string may vary.

4.13.2. Win32 native: diff

A native Win32 diff package can be obtained from http://gnuwin32.sourceforge.net/. Theinstallation
should be straightforward.

The Subversion client TortoiseSVN has a built-in diff feature, see Section 4.12.2, “Win32 native:
TortoiseSVN". Itiscurrently unknownif thistool can be used to create diff filesin the required format,
so other persons can use them.

4.14. patch (optional)

The patch utility is used to merge a diff file into your own source tree. This tool is only needed, if
you want to apply a patch (diff file) from someone else (probably from the developer mailing list) to
try out in your own private source tree.

Tip!

] Unlessyou arein the rare case needing to apply a patch to your private source tree, you
won't need the patch tool installed.

Y ou will find more instructions in Section 3.10, “Apply a patch from someone else” on how to use
the patch tool.

4.14.1. UNIX or Win32 Cygwin: patch

Patch is available for most of the UNIX-like platforms and as the patch package from the Cygwin
setup.

If GNU patchisn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.gnu.org/software/patch/patch.html.

After correct installation, typing at the bash command line prompt:
$ patch --version

should result in something like:

patch 2.5.8
Copyright (C 1988 Larry \all
Copyright (C 2002 Free Software Foundation, Inc.

Thi s program cones with NO WARRANTY, to the extent permitted by |aw
You may redistribute copies of this program

under the ternms of the GNU General Public License.

For nore informati on about these matters, see the file naned COPYI NG

witten by Larry Wall and Paul Eggert

http://gnuwin32.sourceforge.net/
http://www.gnu.org/software/patch/patch.html
http://www.gnu.org/software/patch/patch.html

Tool Reference

However, the version string may vary.

4.14.2. Win32 native: patch

4.15.

4.16.

4.17.

A native Win32 patch package can be obtai ned from http://gnuwin32.sourceforge.net/. Theinstallation
should be straightforward.

The Subversion client TortoiseSVN has a built-in patch feature, see Section 4.12.2, “Win32 native:
TortoiseSVN”. Thelast timetested (Version 1.1.0), thisfeaturefailed to apply patchesknownto be ok.

Win32: GNU wget (optional)

GNU wget is used to download files from the internet using the command line.

GNU wget isavailable for most of the UNIX-like platforms and as the wget package from the Cygwin
setup.

You will only need wget, if you want to use the Win32 automated library download, see Section 5.3
“Win32: Automated library download” for details.

If GNU waget isn't already installed or available as a package for your platform (well, for Win32 it is
available as a Cygwin package), you can get it at: http://www.gnu.org/software/wget/wget.html.

If wget is trying to download files but fails to do so, your Internet connection might use an HTTP
proxy. Some Internet providers use such a proxy and it is common in many company networks today.
Wireshark's setup script will try to discover your proxy settings automatically, but you may need to set
the environment variable HTTP_PROXY by hand before using wget. For example, if you are behind
proxy.com which islistening on port 8080, you have to set it to something like:

set HTTP_PROXY=htt p:// proxy.com 8080/

If you are unsure about the settings, you might ask your system administrator.

Win32: GNU unzip (optional)

GNU unzip is used to, well, unzip the zip files downloaded using the wget tool.

GNU unzipisavailablefor most of the UNIX-like platformsand asthe unzip package from the Cygwin
setup.

Y ou will only need unzip, if you want to use the Win32 automated library download, see Section 5.3
“Win32: Automated library download” for details.

If GNU unzip isn't already installed or available as a package for your platform (well, for Win32
it is available as a Cygwin package), you can get it at: http://gnuwin32.sourceforge.net/packages/
unzip.htm.

Win32: NSIS (optional)

The NSIS (Nullsoft Scriptable Install System) is used to generate wireshark-
wi n32- 1. 9. x. exe from al thefiles needed to beinstalled, including all required DLL'sand such.

To instal it, simply download the latest released version (currently: 2.45) from http:/
nsis.sourceforge.net and start the downloaded installer. Y ou will need NSIS version 2 final or higher.

You will find more instructions in Section 3.12.4, “Win32: NSIS .exe installer” on how to use the
NSIStool.

45

http://gnuwin32.sourceforge.net/
http://www.gnu.org/software/wget/wget.html
http://gnuwin32.sourceforge.net/packages/unzip.htm
http://gnuwin32.sourceforge.net/packages/unzip.htm
http://nsis.sourceforge.net
http://nsis.sourceforge.net

Chapter 5. Library Reference

5.1. Introduction

Severd librariesare needed to build / run Wireshark. Most of thelibrariesare split into three packages:
1. Runtime package: binaries (e.g. win32 DLL's) and alike
2. Developer package: documentation, header files and alike

3. Source package: library sources, usually not required to build Wireshark
Tip!
o Win32: All libraries for the VS9 generation are available at: http:/

anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/, but see Section 5.3
“Win32: Automated library download” for an easier way to install the libraries.

Tip!

L] Win64: All required libraries for the VS9 generation are available at: http:
[/[anonsvn.wireshark.org/wireshark-win64-libs/trunk/packages/, but see Section 5.3
“Win32: Automated library download” for an easier way to install the libraries. Not all
libraries are available, yet.

5.2. Binary library formats

5.2.1.

5.2.2.

5.2.3.

Binary libraries are available in different formats, depending on the C compiler used to build it and
of course the platform they were built for.

Unix
If you have installed unix binary libraries on your system, they will match the C compiler. If not

already installed, the libraries should be available as a package from the platform installer, or you can
download and compile the source and then install the binaries.

Win32: MSVC

Most of the Win32 binary libraries you will find on the web are in this format. Y ou will recognize
MSVC libraries by the .lib/.dll file extension.

Win32: cygwin gcc

Cygwin provides most of the required libraries (with file extension .a or .lib) for Wireshark suitable
for cygwin's gcc compiler.

5.3. Win32: Automated library download

5.3.1.

Initial download

Y ou can download/install all required libraries by using the setup target of the Makef i | e. nnake
from the source package.

46

http://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://anonsvn.wireshark.org/wireshark-win64-libs/trunk/packages/
http://anonsvn.wireshark.org/wireshark-win64-libs/trunk/packages/

Library Reference

5.3.2.

Tip!

L It'sareally good ideato usethe Win32 automated library download to install therequired
libraries as it makes this download very easy.

Notel
7|

— Before you start the download, you must have installed both the required tools (see
Chapter 4, Tool Reference) and also the Wireshark sources (see Section 3.3, “ Obtain the
Wireshark sources”).

By default the librarieswill be downloaded and installed into C. \ wi r eshar k- wi n32-1i bs.You
can change this to any other location by editing the file confi g. nmake and changing the line
containing the WIRESHARK _LIB_DIR setting to your favourite place (use an absolute path here).
Then enter at the command line:

>nmake -f Makefile. nmake setup

This will first check for all the various tools needed to build Wireshark, as described already in
Section 2.2.7, “Verify installed tools”.

Then it will download the zipped libraries (together around 30MB!) from the server location at:
http://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/ into the directory specified by
WIRESHARK LIB DIR andinstall (unzip) al required library files there.

If you have problems downloading the library files, you might be connected to the internet through
a proxy/firewall. In this case see the wget proxy comment in Section 4.15, “Win32: GNU wget

(optional)”.

Update of a previous download

As new versions of the libraries become available, maybe with bugfixes or some new functionality,
your libraries get outdated.

Y ou could ssimply remove everything in the WIRESHARK_LIB_DIR dir and call the set up target
again, but that would require adownload of every file again, which isn't necessary.

The following will bring your libraries up to date:
» Update your Wireshark sources to the latest SVN files (see Section 3.3, “Obtain the Wireshark

sources’), so the zip filenames in the setup target of Makefile.nmake are in sync with the library
zip files on the server.

» Executethelibrary setup command as described above.
>nmake -f Mdkefile.nmake setup

Note that this command will automatically do a cl ean- set up which will remove al files
previously unzipped from the downloaded filesin your WIRESHARK_LIB_DIR library path (all
the subdirs, e.g. c: \ wi r eshar k-w n32-1i bs\ gt k+), except for the zip files located at the
toplevel, which are the files downloaded the last time(s).

Also note that as wget will download only the missing (updated) files, existing zip files in the
WIRESHARK_LIB_DIR dir won't be downloaded again. Remaining (outdated) zip files shouldn't
do any harm.

47

http://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/

Library Reference

5.4. GTK+/ GLib / GDK / Pango / ATK / GNU
gettext / GNU libiconv

5.4.1.

5.4.2.

TheGliblibrary isused asabasic platform abstractionlibrary, it'snot rel ated to graphical user interface
(GUI) things. For a detailed description about GLib, see Section 7.3, “The GLib library”.

The GTK and its dependent libraries are used to build Wireshark's GUI. For a detailed description of
the GTK libraries, see Section 10.2, “The GTK library”.

All other libraries are dependent on the two libraries mentioned above, you will typically not comein
touch with these while doing Wireshark development.

As the requirements for the GLib/GTK libraries have increased in the past, the required additional
libraries depend on the GLib/GTK versions you have. The 2.x versionsrequire al mentioned libs.

Unix
The GLib/GTK+ libraries are available for many unix-like platforms and cygwin.

If these libraries aren't already installed and also aren't available as a package for your platform, you
can get them at: http://www.gtk.org/download.html.

Win32 MSVC

You can get the latest version at: http://www.gtk.org/download.html.

5.5. SMI (optional)

5.5.1.

5.5.2.

"Varioustools relating to the SMI MIB Information”
Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.ibr.cs.tu-bs.de/projects/libsmi/.

Win32 MSVC

Wireshark uses the source libSMI distribution at http://www.ibr.cs.tu-bs.de/projects/libsmi/. libSMI
is compiled using MSV C++ 6.0. It's stored in the libsmi zip archive at http://anonsvn.wireshark.org/
wireshark-win32-libs/trunk/packages/

5.6. c-ares (optional)

5.6.1.

"Library for asynchronous name resolves."

Thisisthe primary name resolving library for Wireshark. It replaces ADNS.
Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[[c-ares.haxx.sel.

5.6.2. Win32 MSVC

Y ou can get the latest version at: http://c-ares.haxx.se/.

48

http://www.gtk.org/download.html
http://www.gtk.org/download.html
http://www.ibr.cs.tu-bs.de/projects/libsmi/
http://www.ibr.cs.tu-bs.de/projects/libsmi/
http://www.ibr.cs.tu-bs.de/projects/libsmi/
http://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://anonsvn.wireshark.org/wireshark-win32-libs/trunk/packages/
http://c-ares.haxx.se/
http://c-ares.haxx.se/
http://c-ares.haxx.se/

Library Reference

5.7. GNU adns (optional)

"Advanced, easy to use, asynchronous-capable DNS client library and utilities."

5.7.1. Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[lwww.gnu.org/software/adns/.

5.7.2. Win32 MSVC

You can get the latest version at: http://adns.jgaa.com/

5.8. zlib (optional)

"Zlib is designed to be a free, general-purpose, legally unencumbered -- that is, not covered by any
patents -- lossless data-compression library for use on virtually any computer hardware and operating
system."

5.8.1. Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.gzip.org/zlibl.

5.8.2. Win32 MSVC

Y ou can get the latest version at: http://gnuwin32.sourceforge.net/packages/zlib.htm

(A version for the MSV C2003 compiler can be found at: http://www.winimage.com/zLibDlII/)

5.9. libpcap/WinPcap (optional)

"packet capture library"

5.9.1. Unix: libpcap

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.tcpdump.org/.

5.9.2. Win32 MSVC: WinPcap

Y ou can get the "Windows packet capture library” at: http://www.winpcap.org/install/default.htm

5.10. GnNuTLS (optional)

The"GNU Transport Layer Security Library" isused to dissect SSL and TL S protocols (aka: HTTPS).

5.10.1. Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.gnu.org/software/gnutls/download.html.

49

http://www.gnu.org/software/adns/
http://www.gnu.org/software/adns/
http://adns.jgaa.com/
http://www.gzip.org/zlib/zlib_license.html
http://www.gzip.org/zlib/
http://www.gzip.org/zlib/
http://gnuwin32.sourceforge.net/packages/zlib.htm
http://www.winimage.com/zLibDll/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.winpcap.org/install/default.htm
http://www.gnu.org/software/gnutls/download.html
http://www.gnu.org/software/gnutls/download.html

Library Reference

5.10.2. Win32 MSVC

Weroll our own version using: http://josefsson.org/gnutls4win/

5.11. Gcerypt (optional)

The"Gerypt Library" is Low-level encryption library and provides support for many ciphers, such as
DES, 3DES, AES, Blowfish, and others..

5.11.1. Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[ldirectory.fsf.org/security/libgcrypt.html.

5.11.2. Win32 MSVC

Part of our homemade GnuTL S package.

5.12. Kerberos (optional)

The Kerberos library is used to dissect K erberos, sealed DCERPC and securel DAP protocols.

5.12.1. Unix
If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
/Iweb.mit.edu/K erberos/dist/.

XXX - Isit supported on *NIX at all?

5.12.2. Win32 MSVC

Y ou can get the latest version of KfW "Kerberos for Windows" at: http://web.mit.edu/K erberos/dist/

5.13. LUA (optional)

The LUA library is used to add scripting support to Wireshark.

5.13.1. Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[lwww.lua.org/download.html.

5.13.2. Win32 MSVC

You can get the latest version at: http://luaforge.net/frs/?group_id=110

5.14. PortAudio (optional)

The PortAudio library enables audio output for RTP streams.

5.14.1. Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[Iwww . portaudio.com/download.html.

50

http://josefsson.org/gnutls4win/
http://directory.fsf.org/security/libgcrypt.html
http://directory.fsf.org/security/libgcrypt.html
http://web.mit.edu/Kerberos/dist/
http://web.mit.edu/Kerberos/dist/
http://web.mit.edu/Kerberos/dist/
http://www.lua.org/download.html
http://www.lua.org/download.html
http://luaforge.net/frs/?group_id=110
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html

Library Reference

5.14.2. Win32 MSVC

Y ou can get the latest version at: http://www.portaudio.com/download.html

5.15. GeolP (optional)

MaxMind Inc. publishes a Geol P database for use in open source software. It can be used to map IP
addresses to geographical locations.

5.15.1. Unix

If thislibrary isn't already installed or available as a package for your platform, you can get it at: http:
[Iwww.maxmind.com/app/c.

5.15.2. Win32 MSVC

Y ou can get the latest version at: http://www.maxmind.com/app/c

51

http://www.portaudio.com/download.html
http://www.maxmind.com/app/c
http://www.maxmind.com/app/c
http://www.maxmind.com/app/c

Part Il. Wireshark
Development (incomplete)

Part |. Wireshark Build Environment

The first part describes how to set up the tools, libraries and source needed to generate Wireshark, and how to
do some typical development tasks.

Part I1. Wireshark Development

The second part describes how the Wireshark sources are structured and how to change the sources (e.g.
adding a new dissector).

Chapter 6. How Wireshark Works

6.1. Introduction

This chapter will give you a short overview of how Wireshark works.

6.2. Overview

The following will give you asimplified overview of Wireshark's function blocks:

Figure6.1. Wireshark function blocks.

=
Wireshark

GTK+ 2

Protocol-Tree
Dissectors
Core Epan:
Dissector-Plugins
Display-Filters
Capture . Wiretap

Dumpcap
capture engine

WinPcap / libpcap

““““““““““““““ 5

Capture-Filters

The function blocks in more detail :

GTK+2 Handling of all user input/output (all windows, dialogs and
such). Source code can be found in the gt k directory.

Core Main "glue code" that holds the other blocks together. Source
code can be found in the root directory.

Epan Ethereal Packet ANalyzer - the packet analyzing engine.
Source code can be found in the epan directory.

e Protocol-Tree - Keep data of the capture file protocol
information.

« Dissectors - The various protocol dissectors in epan/
di ssectors.

53

How Wireshark Works

 Dissector-Plugins - Some of the protocol dissectors are
implemented as plugins. Source code can be found in
pl ugi ns.

» Digplay-Filters - the display filter engine a epan/

dfilter.

Wiretap Thewiretap library isused to read/write capturefilesin libpcap
and a lot of other file formats. Source code in the wi r et ap
directory.

Capture The interface with the capture engine. Source code in the root
directory.

Dumpcap The capture engineitself. Thisisthe only part that isto execute

with elevated privileges. Source code in the root directory.

WinPcap / libpcap (not part of The platform dependent packet capture library, including the

the Wireshark package) capture filter engine. That's the reason why we still have
different display and capture filter syntax, as two different
filtering engines are used.

6.3. Capturing packets

Capturing will take packets from a network adapter, and save them to afile on your harddisk.

Since raw network adapter access requires elevated privileges these functions are isolated into the
dumpcap program. It's only this program that needs these privileges, allowing the main part of the
code (dissectors, user interface, etc) to run as normal user program.

To hide al the lowlevel machine dependent details from Wireshark, the libpcap/WinPcap (see
Section 5.9, “libpcap/WinPcap (optional)”) library is used. This library provides a general purpose
interface to capture packets from alot of different network interface types (Ethernet, Token Ring, ...).

6.4. Capture Files

Wireshark can read and write capture files in its natural file format, the libpcap format, which is
used by many other network capturing tools, e.g. tcpdump. In addition to this, as one of its strengths,
Wireshark can read/write files in many different file formats of other network capturing tools. The
wiretap library, developed together with Wireshark, provides ageneral purposeinterfaceto read/write
all thefile formats. If you need to add another capture file format, thisis the place to start.

6.5. Dissect packets

While Wireshark isloading packets from afile, each packet is dissected. Wireshark triesto detect the
packet type and gets as much information from the packet as possible. In this run though, only the
information shown in the packet list pane is needed.

As the user selects a specific packet in the packet list pane, this packet will be dissected again. This
time, Wireshark tries to get every single piece of information and put it into the packet details pane.

Chapter 7. Introduction

7.1. Source overview

Wireshark consists of the following major parts:

* Packet dissection - in the /epan/dissector and /plugin/* directory

File 1/O - using Wireshark's own wiretap library

 Capture - using the libpcap/winpcap library, in /wiretap

* User interface - using the GTK+ (and corresponding) libraries
» Help - using an externa webbrowser and GTK text output
Beside this, some other minor parts and additional helpers exist.

Currently there's no clean separation of the modules in the code. However, as the devel opment team
switched from Concurrent Versions System (CVS) to Subversion (SVN) some time ago, directory
cleanup is much easier now. So there's a chance that the directory structure will become clean in the
future.

7.2. Coding styleguides

The coding styleguides for Wireshark can be found in the "Code style" section of the file doc/
README. devel oper .

7.3. The GLib library

Glibisused as a basic platform abstraction library, it's not related to GUI things.

To quote the Glib documentation: “GLib is a general-purpose utility library, which provides many
useful data types, macros, type conversions, string utilities, file utilities, amain loop abstraction, and
so on. It works on many UNIX-like platforms, Windows, OS/2 and BeOS. GLib is released under the
GNU Library General Public License (GNU LGPL).”

GLib contains lot's of useful things for platform independent development. See http://
developer.gnome.org/doc/API/2.0/glib/index.html for details about GLib.

55

http://developer.gnome.org/doc/API/2.0/glib/index.html
http://developer.gnome.org/doc/API/2.0/glib/index.html

Chapter 8. Packet capturing

XXX - this chapter has to be reviewed and extended!

8.1. How to add a new capture type to libpcap

The following is an excerpt from a developer mailing list mail, about adding 1SO 9141 and 14230
(simple seria line card diagnostics) to Wireshark:

For libpcap, thefirst thing you'd need to do would betoget DLT__ valuesfor al thelink-layer protocols
you'd need. If 1SO 9141 and 14230 use the same link-layer protocol, they might be able to share a
DLT_ value, unless the only way to know what protocols are running above the link layer isto know
which link-layer protocol is being used, in which case you might want separate DLT _ values.

For the rest of the libpcap discussion, I'll assume you're working with the current top-of-tree CVS
version of libpcap, and that thisis on a UN*X platform. You probably don't want to work with a
version older than 0.8, even if whatever OS you're using happens to include libpcap - older versions
are not as friendly towards adding support for devices other than standard network interfaces.

Then you'd probably add to the "pcap_open_live()" routine, for whatever platform or platforms this
code should work, something such as a check for device names that ook like serial port names and,
if the check succeeds, a call to aroutine to open the serial port.

See, for example, the "#ifdef HAVE_DAG_API" code in pcap-linux.c and pcap-bpf.c.

The serial port open routine would open the serial port device, set the baud rate and do anything else
needed to open the device. It'd allocate a pcap t, set its "fd" member to the file descriptor for the
seria device, set the "snapshot” member to the argument passed to the open routine, set the "linktype"
member to one of the DLT_ values, and set the "selectable fd" member to the same value as the "fd"
member. It should also set the "dIt_count" member to the number of DLT_ values to support, and
alocate an array of "dIt_count” "u_int"s, assign it to the "dit_list" member, and fill in that list with
al the DLT_ values.

You'd then set the various _op fields to routines to handle the operations in question. read_op is the
routine that'd read packets from the device. inject_op would be for sending packets; if you don't care
about that, you'd set it to aroutine that returns an error indication. setfilter_op can probably just be set
toinstall_bpf_program. set_datalink would just set the "linktype" member to the specified valueif it's
one of the values for OBD, otherwiseit should return an error. getnonblock_op can probably be set to
pcap_getnonblock_fd; setnonblock_op can probably be set to pcap_setnonblock_fd. stats op would
be set to aroutine that reports statistics. close_op can probably be set to pcap_close_common.

If there's more than one DLT_ value, you definitely want a set_datalink routine, so that the user can
select the appropriate link-layer type.

For Wireshark, you'd add support for those DLT_ values to wiretap/libpcap.c, which might mean
adding one or more WTAP_ENCAP types to wtap.h and to the encap_table[] table in wiretap/wtap.c.
You'd then have to write a dissector or dissectors for the link-layer protocols or protocols and have
them register themselveswith the "wtap_encap" dissector table, with the appropriate WTAP_ENCAP
values, by calling "dissector_add_uint()".

56

Chapter 9. Packet dissection

9.1. How it works

Each dissector decodes its part of the protocol, and then hands off decoding to subsequent dissectors
for an encapsulated protocol.

So it might all start with a Frame dissector which dissects the packet details of the capture file itself
(e.g. timestamps), passes the data on to an Ethernet frame dissector that decodes the Ethernet header,
and then passes the payload to the next dissector (e.g. IP) and so on. At each stage, detail s of the packet
will be decoded and displayed.

Dissection can be implemented in two possible ways. One is to have a dissector module compiled
into the main program, which meansit's always available. Another way isto make a plugin (a shared
library/DLL) that registersitself to handle dissection.

There is little difference in having your dissector as either a plugin or built-in. On the Windows
platform you have limited function access through what's listed in | i bwi r eshar k. def , but that
ismostly complete.

The big plusisthat your rebuild cycle for a plugin is much shorter than for a built-in one. So starting

with a plugin makes initial development simpler, while deployment of the finished code may well be
done as built-in dissector.

_4 See also README.developer
&

—_— The file doc/ README. devel oper contains much detailed information about
implementing a dissector (and may, in some cases, be more up-to-date than this
document).

9.2. Adding a basic dissector

9.2.1.

Let's step through adding a basic dissector. Well start with the made up "foo" protocol. It consists of
the following basic items.

» A packet type - 8 bits, possible values: 1 - initialisation, 2 - terminate, 3 - data.
» A set of flags stored in 8 bits, 0x01 - start packet, 0x02 - end packet, 0x04 - priority packet.
A sequence number - 16 bits.

e AnIP address.

Setting up the dissector

Thefirst decision you need to make isif this dissector will be abuilt-in dissector, included in the main
program, or a plugin.

Plugins are the easiest to write initially, so let's start with that. With a little care, the plugin can be
made to run as a built-in easily too - so we haven't lost anything.

57

Packet dissection

Example 9.1. Dissector Initialisation.

#i f def HAVE_CONFI G H
include "config.h"
#endi f

#i ncl ude <epan/ packet. h>
#def i ne FOO_PORT 1234
static int proto_foo = -1;
voi d

proto_regi ster_foo(void)

{

proto_foo = proto_register_protocol (

"FOO Protocol", /* nane */
"FOO', /* short nanme */

"foo0" | * abbrev */

)

Let's go through this a bit at atime. First we have some boilerplate include files. These will be pretty
constant to start with.

Next we have an int that isinitialised to -1 that records our protocol. Thiswill get updated when we
register this dissector with the main program. It's good practice to make al variables and functions
that aren't exported static to keep hame space pollution down. Normally this isn't a problem unless
your dissector gets so big it hasto span multiple files.

Then a#define for the UDP port that we'll assume we are dissecting traffic for.

Now that we have the basics in place to interact with the main program, we'll start with two protocol
dissector setup functions.

Firstwell call thepr ot o_regi st er _prot ocol () functionwhich registersthe protocol. We can
giveit three namesthat will be used for display in various places. The full and short name are used in
e.g. the "Preferences’ and "Enabled protocols' dialogs as well as the generated field name list in the
documentation. The abbreviation is used as the display filter name.

Next we need a handoff routine.

Example 9.2. Dissector Handoff.

voi d
proto_reg_handof f_foo(voi d)

{

static dissector_handle_t foo_handl e;

foo_handl e = create_di ssector_handl e(di ssect _foo, proto_foo);
di ssector_add_ui nt ("udp. port", FOO PORT, foo_handle);

What's happening here? We are initialising the dissector. First we create a dissector handle; It is
associated with the foo protocol and with aroutine to be called to do the actual dissecting. Then we
associate the handle with a UDP port number so that the main program will know to call us when it
gets UDP traffic on that port.

The stardard Wireshark dissector convention is to put proto_register foo() and
proto_reg handof f_foo() asthelast two functionsin the dissector source.

58

Packet dissection

9.2.2.

Now at last we get to write some dissecting code. For the moment we'll leaveit as abasic placeholder.

Example 9.3. Dissection.

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{
col _set _str(pinfo->cinfo, COL_PROTOCCOL, "FOO');
/* Clear out stuff in the info colum */
col _cl ear (pi nf o->ci nfo, COL_I NFO) ;

Thisfunctionis called to dissect the packets presented to it. The packet datais held in a special buffer
referenced here as tvh. We shall become fairly familiar with this as we get deeper into the details of
the protocol. The packet info structure contains general data about the protocol, and we can update
information here. The tree parameter is where the detail dissection takes place.

For now well do the minimum we can get away with. In the first line we set the text of this to our
protocol, so everyone can seeit's being recognised. The only other thing we do isto clear out any data
in the INFO column if it's being displayed.

At this point we should have a basic dissector ready to compile and install. It doesn't do much at
present, other than identify the protocol and label it.

In order to compile this dissector and create a plugin a couple of support files are required, besides
the dissector sourcein packet - f 0o0. c:

e Makefileam - Thisisthe UNIX/Linux makefile template

» Makefile.common - This contains the file names of this plugin

» Makefile.nmake - This contains the Wireshark plugin makefile for Windows

» moduleinfo.h - This contains plugin version info

» moduleinfo.nmake - This contains DLL version info for Windows

 packet-foo.c - Thisisyour dissector source

e plugin.rc.in - This contains the DLL resource template for Windows

Y ou canfind agood examplefor thesefilesintheinterlink plugin directory. Makef i | e. common and
Makef i | e. amhaveto bemodified to reflect therelevant filesand dissector name. nodul ei nf 0. h

and nodul ei nf 0. nmake have to be filled in with the version information. Compile the dissector
toaDLL or shared library and copy it into the plugin directory of the installation.

Dissecting the details of the protocol

Now that we have our basic dissector up and running, let's do something with it. The simplest thing to
do to start with isto just label the payload. Thiswill allow usto set up some of the partswe will need.

The first thing we will do is to build a subtree to decode our results into. This helps to keep things
looking nice in the detailed display. Now the dissector is called in two different cases. In one case it
iscalled to get asummary of the packet, in the other caseit is called to look into details of the packet.
These two cases can be distinguished by the tree pointer. If the tree pointer is NULL, then we are
being asked for a summary. If it is non NULL, we can pick apart the protocol for display. So with
that in mind, let's enhance our dissector.

59

Packet dissection

Example 9.4. Plugin Packet Dissection.

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

col _set_str(pinfo->cinfo, CO._PROTCCOL, "FOQO');
/* Clear out stuff in the info colum */
col _cl ear (pi nfo->ci nfo, COL_I NFO) ;

if (tree) { /* we are being asked for details */
proto_item*ti = NULL;
ti = proto_tree_add_iten(tree, proto_foo, tvb, 0, -1, ENC NA);

What we're doing here is adding a subtree to the dissection. This subtree will hold al the details of
this protocol and so not clutter up the display when not required.

We are also marking the area of datathat is being consumed by this protocol. In our caseit's al that
has been passed to us, aswe're assuming this protocol does not encapsulate another. Therefore, we add
the new tree node with prot o_tree_add_i t en{(), adding it to the passed in tree, label it with
the protocol, use the passed in tvb buffer as the data, and consume from O to the end (-1) of this data.
ENC_NA ("not applicable") is specified as the "encoding” parameter.

After this change, there should be a label in the detailed display for the protocol, and selecting this
will highlight the remaining contents of the packet.

Now let's go to the next step and add some protocol dissection. For this step we'lll need
to construct a couple of tables that help with dissection. This needs some additions to the
proto_register_foo() function shown previously.

Two statically allocated arrays are added at the beginning of pr ot o_r egi st er _f oo() . Thearrays
are then registered after the call topr ot o_r egi st er _prot ocol ().

Example 9.5. Registering data structures.

voi d

proto_regi ster_foo(void)

{

static hf_register_info hf[] = {
{ &hf_foo_pdu_type,

{ "FOO PDU Type", "foo.type",
FT_UI NT8, BASE_DEC,
NULL, 0xO,
NULL, HFILL }

3

/* Setup protocol subtree array */
static gint *ett[] = {

&ett _foo

H

proto_foo = proto_register_protocol (
"FOO Protocol", /* nane */
" FOO', /* short name */

00" /* abbrev */

);

proto_register_field_array(proto_foo, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));

60

Packet dissection

Thevariableshf _foo_pdu_type andett f oo alsoneed to be declared somewhere near the top
of thefile.

Example 9.6. Dissector data structure globals.

static int hf_foo_pdu_type = -1;

static gint ett_foo = -1,

Now we can enhance the protocol display with some detail.

Example 9.7. Dissector starting to dissect the packets.

if (tree) { /* we are being asked for details */
proto_item*ti = NULL;
proto_tree *foo_tree = NULL;

ti = proto_tree_add_itenm(tree, proto_foo, tvb, 0, -1, ENC_NA);
foo_tree = proto_item add_subtree(ti, ett_foo);
proto_tree_add_iten(foo_tree, hf_foo_pdu_type, tvb, 0, 1, ENC Bl G ENDI AN);

Now the dissection is starting to look more interesting. We have picked apart our first bit of the
protocol. One byte of data at the start of the packet that defines the packet type for foo protocol.

The proto_item add _subtree() cal has added a child node to the protocol tree which is
where we will do our detail dissection. The expansion of this node is controlled by theett f oo
variable. This remembers if the node should be expanded or not as you move between packets.
All subsequent dissection will be added to this tree, as you can see from the next call. A call
toproto tree_add _item() inthefoo_tree, thistimeusing the hf _foo_pdu_type to
control the formatting of the item. The pdu type is one byte of data, starting at 0. We assume it is
in network order (also caled big endian), so that is why we use ENC_BIG_ENDIAN. For a 1-byte
guantity, there is no order issue, but it is good practice to make this the same as any multibyte fields
that may be present, and aswe will seein the next section, this particular protocol uses network order.

If welook in detail at thehf f oo _pdu_t ype declaration in the static array we can see the details
of the definition.

« hf _foo pdu type - theindex for this node.
e FOO PDU Type - the label for thisitem.
« foo.type- thisisthefilter string. It enablesusto type constructs such asfoo.type=1into thefilter box.

e FT_UINTS - this specifies this item is an 8bit unsigned integer. This tallies with our call above
where we tell it to only look at one byte.

 BASE DEC - for an integer type, this tells it to be printed as a decimal number. It could be
hexdecimal (BASE_HEX) or octal (BASE_OCT) if that made more sense.

WEe'l ignore the rest of the structure for now.
If you install this plugin and try it out, you'll see something that begins to look useful.

Now let's finish off dissecting the simple protocol. We need to add a few more variables to the hf
array, and a couple more procedure calls.

61

Packet dissection

Example 9.8. Wrapping up the packet dissection.

static int hf_foo_flags = -1;
static int hf_foo_sequenceno = -1;
static int hf_foo_initialip = -1;

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{
gint offset = O;
if (tree) { /* we are being asked for details */
proto_item*ti = NULL;
proto_tree *foo_tree = NULL;
ti = proto_tree_add_itenm(tree, proto_foo, tvb, 0, -1, ENC_NA);
foo_tree = proto_item add_subtree(ti, ett_foo);
proto_tree_add_iten(foo_tree, hf_foo_pdu_type, tvb, offset, 1, ENC BI G ENDI AN);
of fset += 1;
proto_tree_add_iten(foo_tree, hf_foo_flags, tvb, offset, 1, ENC Bl G END AN);
of fset += 1;
proto_tree_add_iten(foo_tree, hf_foo_sequenceno, tvb, offset, 2, ENC_BI G ENDI AN);
of fset += 2;
proto_tree_add_iten(foo_tree, hf_foo_initialip, tvb, offset, 4, ENC_BI G ENDI AN);
of fset += 4;
}
}
voi d

proto_register_foo(void) {

{ &nhf_foo_fl ags,
{ "FOO PDU Fl ags", "foo.flags",
FT_UI NT8, BASE_HEX,
NULL, 0xO,
NULL, HFILL }
b
{ &hf_foo_sequenceno,
{ "FOO PDU Sequence Number", "foo.seqgn",
FT_UI NT16, BASE_DEC,
NULL, 0xO,
NULL, HFILL }
b
{ &hf_foo_initialip,
{ "FOO PDU Initial IP', "foo.initialip",
FT_I Pv4, BASE_NONE,
NULL, 0xO,
NULL, HFILL }

Thisdissectsall the bitsof thissimple hypothetical protocol. We'veintroduced anew variableof f set
into the mix to help keep track of where we are in the packet dissection. With these extrabitsin place,
the whole protocol is now dissected.

62

Packet dissection

9.2.3. Improving the dissection information

We can certainly improve the display of the protocol with a bit of extra data. The first step is to add
some text labels. Let's start by labeling the packet types. Thereis some useful support for this sort of
thing by adding a couple of extrathings. First we add a simple table of type to name.

Example 9.9. Naming the packet types.

static const value_string packettypenanmes[] = {
{ 1, "Initialise" },
{ 2, "Term nate" },
{ 3, "Data" },
{ 0, NULL }

Thisis a handy data structure that can be used to look up a name for a value. There are routines to
directly access this lookup table, but we don't need to do that, as the support code already has that
added in. We just have to give these detail s to the appropriate part of the data, using the VAL S macro.

Example 9.10. Adding Namesto the protocol.

{ &hf_foo_pdu_type,
{ "FOO PDU Type", "foo.type",
FT_UI NT8, BASE_DEC,
VALS(packettypenanes), 0xO0,
NULL, HFILL }

This helps in deciphering the packets, and we can do a similar thing for the flags structure. For this
we need to add some more data to the table though.

63

Packet dissection

Example 9.11. Adding Flagsto the protocol.

#defi ne FOO_START_FLAG 0x01
#defi ne FOO_END_FLAG 0x02
#define FOO PRI ORI TY_FLAG 0x04

static int hf_foo_startflag = -1;
static int hf_foo_endflag = -1;
static int hf_foo_priorityflag = -1;

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

proto_tree_add_iten(foo_tree, hf_foo_flags, tvb, offset, 1, ENC Bl G END AN);

proto_tree_add_iten(foo_tree, hf_foo_startflag, tvb, offset, 1, ENC_BI G ENDI AN);
proto_tree_add_iten(foo_tree, hf_foo_endflag, tvb, offset, 1, ENC BI G ENDI AN);
proto_tree_add_iten(foo_tree, hf_foo_priorityflag, tvb, offset, 1, ENC Bl G END AN);

of fset += 1;

}

voi d
proto_regi ster_foo(void) {

{ &hf_foo_startflag,
{ "FOO PDU Start Flags", "foo.flags.start",
FT_BOOLEAN, 8,
NULL, FOO START_FLAG,
NULL, HFILL }
H
{ &hf_foo_endfl ag,
{ "FOO PDU End Fl ags", "foo.flags.end",
FT_BOOLEAN, 8,
NULL, FOO _END_FLAG,
NULL, HFILL }
H
{ & f _foo_priorityflag,
{ "FOO PDU Priority Flags", "foo.flags.priority",
FT_BOOLEAN, 8,

NULL, FOO PRI ORI TY_FLAG
NULL, HFILL }

Some things to note here. For the flags, as each bit isa different flag, we use thetype FT_BOOLEAN,
as the flag is either on or off. Second, we include the flag mask in the 7th field of the data, which
allows the system to mask the relevant bit. We've also changed the 5th field to 8, to indicate that we
are looking at an 8 hit quantity when the flags are extracted. Then finally we add the extra constructs

to the dissection routine. Note we keep the same offset for each of the flags.

Thisisstarting tolook fairly full featured now, but there are acouple of other thingswe can do to make
thingslook even more pretty. At the moment our dissection showsthe packetsas"Foo Protocol” which
whilst correctisalittle uninformative. We can enhance thisby adding alittle more detail. First, let'sget

hold of the actual value of the protocol type. We can use the handy functiont vb_get _gui nt 8()

to do this. With this value in hand, there are a couple of things we can do. First we can set the INFO

column of the non-detailed view to show what sort of PDU it is - which is extremely helpful when
looking at protocol traces. Second, we can aso display this information in the dissection window.

Packet dissection

Example 9.12. Enhancing the display.

static void
di ssect _foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{
gui nt 8 packet _type = tvb_get_guint8(tvb, 0);

col _set _str(pi nfo->cinfo, COL_PROTOCCOL, "FOO');
/* Clear out stuff in the info colum */
col _cl ear (pi nf o->ci nfo, COL_I NFO) ;
col _add_fstr(pinfo->cinfo, COL_I NFO, "Type %",
val _to_str(packet_type, packettypenanmes, "Unknown (O0x%©92x)"));

if (tree) { /* we are being asked for details */
proto_item*ti = NULL;
proto_tree *foo_tree = NULL;
gint offset = O;

ti = proto_tree_add_item(tree, proto_foo, tvb, 0, -1, ENC_NA);
proto_item append_text(ti, ", Type %",
val _to_str(packet_type, packettypenanmes, "Unknown (O0x%©02x)"));
foo_tree = proto_item add_subtree(ti, ett_foo);
proto_tree_add_iten(foo_tree, hf_foo_pdu_type, tvb, offset, 1, ENC BI G ENDI AN);
of fset += 1;

So here, after grabbing the value of the first 8 bits, we use it with one of the built-in utility routines
val to_str(),tolookupthevaue. If thevalueisn't found we provide afallback which just prints
the value in hex. We use this twice, once in the INFO field of the columns - if it's displayed, and
similarly we append this data to the base of our dissecting tree.

9.3. How to handle transformed data

Some protocols do clever things with data. They might possibly encrypt the data, or compress data,
or part of it. If you know how these steps are taken it is possible to reverse them within the dissector.

As encryption can be tricky, let's consider the case of compression. These techniques can also work
for other transformations of data, where some step is required before the data can be examined.

What basically needs to happen here, isto identify the data that needs conversion, take that data and
transform it into a new stream, and then call adissector on it. Often this needs to be done "on-the-fly"
based on clues in the packet. Sometimes this needs to be used in conjunction with other techniques,
such as packet reassembly. The following shows a technique to achieve this effect.

65

Packet dissection

Example 9.13. Decompressing data packets for dissection.

guint8 flags = tvb_get_guint8(tvb, offset);
of fset ++;
if (flags & FLAG COVWPRESSED) { /* the remai nder of the packet is conpressed */
guint16 orig_size = tvb_get_ntohs(tvb, offset);
guchar *deconpressed_buffer = (guchar*)g_nalloc(orig_size);
of fset += 2;
deconpr ess_packet (tvb_get_ptr(tvb, offset, -1),
tvb_l engt h_r enai ni ng(tvb, offset),
deconpr essed_buffer, orig_size);
/* Now re-setup the tvb buffer to have the new data */
next _tvb = tvb_new child_real _data(tvb, deconpressed_buffer, orig_size, orig_size);
tvb_set _free_cb(next_tvb, g_free);
add_new_dat a_sour ce(pi nfo, next_tvb, "Deconpressed Data");
} else {
next _tvb = tvb_new subset _remaini ng(tvb, offset);

of fset = 0;
/* process next_tvb fromhere on */

The first steps here are to recognise the compression. In this case a flag byte aerts us to the fact the
remainder of the packet is compressed. Next we retrieve the original size of the packet, which in this
case is conveniently within the protocal. If it's not, it may be part of the compression routine to work
it out for you, in which case the logic would be different.

So armed with the size, abuffer isallocated to receive the uncompressed datausing g_malloc, and the
packet is decompressed into it. Thet vb_get _pt r () function is useful to get a pointer to the raw
data of the packet from the offset onwards. In this case the decompression routine al so needs to know
the length, whichiisgiven by thet vb_1| engt h_r emai ni ng() function.

Next we build a new tvb buffer from this data, using thet vb_new chil d_real _data() cal.
This data is a child of our origina data, so calling this function also acknowledges that. One
procedural step isto add a callback handler to free the data when it's no longer needed via a cal to
tvb_set free_cb().Inthiscaseg nal | oc() wasusedtoallocatethememory,sog_free()

isthe appropriate callback function. Finally we add this tvb as a new data source, so that the detailed
display can show the decompressed bytes as well asthe original.

After this has been set up the remainder of the dissector can dissect the buffer next _t vb, asit's
a new buffer the offset needs to be O as we start again from the beginning of this buffer. To make
the rest of the dissector work regardless of whether compression was involved or not, in the case
that compression was not signaled, weuset vb_new_subset _r emai ni ng() todeliver usanew
buffer based on the old one but starting at the current offset, and extending to the end. This makes
dissecting the packet from this point on exactly the same regardless of compression.

9.4. How to reassemble split packets

Some protocol s have times when they have to split alarge packet across multiple other packets. In this
case the dissection can't be carried out correctly until you have all the data. The first packet doesn't
have enough data, and the subsequent packets don't have the expect format. To dissect these packets
you need to wait until all the parts have arrived and then start the dissection.

9.4.1. How to reassemble split UDP packets

Asan example, let'sexamine aprotocol that islayered on top of UDPthat splitsup its own datastream.
If a packet is bigger than some given size, it will be split into chunks, and somehow signaled within
its protocol.

66

Packet dissection

To deal with such streams, we need several things to trigger from. We need to know that this packet
is part of amulti-packet sequence. We need to know how many packets are in the sequence. We also
need to know when we have all the packets.

For this example we'll assume there is a simple in-protocol signaling mechanism to give details. A
flag byte that signals the presence of a multi-packet sequence and also the last packet, followed by an
ID of the sequence and a packet sequence number.

msg_pkt ::= SEQUENCE {
flags ::= SEQUENCE {
fragment BOOLEAN,

| ast _fragment BOOLEAN,

}
msg_id | NTEGER(O. . 65535),
frag_id | NTEGER(O. . 65535),

Example 9.14. Reassembling fragments- Part 1

#i ncl ude <epan/reassenbl e. h>

save_fragnented = pinfo->fragnented;
flags = tvb_get _guint8(tvb, offset); offset++;
if (flags & FL_FRAGVENT) { /* fragmented */
tvbuff_t* new_ tvb = NULL;
fragment _data *frag_nsg = NULL;
guint16 nsg_seqid = tvb_get_ntohs(tvb, offset); offset += 2;
guint16 nsg_num = tvb_get_ntohs(tvb, offset); offset += 2;

pi nf o- >fragnented = TRUE;
frag_msg = fragment _add_seq_check(tvb, offset, pinfo,
msg_seqid, /* ID for fragnents bel ongi ng together */
meg_fragment _table, /* list of nessage fragnents */
nmeg_reassenbl ed_table, /* list of reassenbl ed nessages */
msg_num /* fragment sequence nunber */
tvb_l engt h_renai ni ng(tvb, offset), /* fragment length - to the end */
flags & FL_FRAG LAST); /* Mre fragnments? */

We start by saving the fragmented state of this packet, so we can restore it later. Next comes some
protocol specific stuff, to dig the fragment data out of the stream if it's present. Having decided it is
present, we let the function f r agnent _add_seq_check() doitswork. We need to provide this
with a certain amount of data.

e Thetvb buffer we are dissecting.

e The offset where the partial packet starts.

e The provided packet info.

 The sequence number of the fragment stream. There may be several streams of fragmentsin flight,
and thisis used to key the relevant one to be used for reassembly.

e The msg_fragment_table and the msg_reassembled table are variables we need to declare. Welll
consider these in detail later.

* msg_num is the packet number within the sequence.

» Thelength hereis specified as the rest of the tvb as we want the rest of the packet data.

67

Packet dissection

e Finally a parameter that signalsif this is the last fragment or not. This might be a flag as in this
case, or there may be a counter in the protocol.

Example 9.15. Reassembling fragmentspart 2

new_tvb = process_reassenbl ed_data(tvb, offset, pinfo,
"Reassenbl ed Message", frag_nsg, &nmsg_frag_itens,
NULL, nsg_tree);

if (frag_msg) { /* Reassenbled */
col _append_str (pi nfo->cinfo, COL_I NFQ
" (Message Reassenbl ed)");
} else { /* Not |ast packet of reassenbled Short Message */
col _append_fstr(pinfo->cinfo, COL_I NFO
" (Message fragnent %)", msg_num;

}

if (newtvb) { /* take it all */
next _tvb = new_tvb;
} else { /* make a new subset */
next _tvb = tvb_new subset(tvb, offset, -1, -1);

}

else { /* Not fragmented */
next _tvb = tvb_new subset(tvb, offset, -1, -1);

pi nf o->fragnented = save_fragnent ed;

Having passed the fragment data to the reassembly handler, we can now check if we have the whole
message. If there is enough information, this routine will return the newly reassembled data buffer.

After that, we add acouple of informative messagesto thedisplay to show that thisispart of asequence.
Then ahit of manipulation of the buffers and the dissection can proceed. Normally you will probably
not bother dissecting further unless the fragments have been reassembled as there won't be much to
find. Sometimes the first packet in the sequence can be partially decoded though if you wish.

Now the mysterious data we passed into thef r agnent _add_seq_check() .

Example 9.16. Reassembling fragments - I nitialisation

static CHashTabl e *nmsg_fragment _table = NULL;
static CGHashTabl e *nmsg_reassenbl ed_t abl e = NULL;

static void
nmsg_i ni t_protocol (voi d)

{
fragment _tabl e_init(&sg_fragment_table);
reassenbl ed_tabl e_init (&sg_reassenbl ed_t abl e) ;

First acouple of hash tables are declared, and these are initialised in the protocol initialisation routine.
Following that, afragment_items structure is allocated and filled in with a series of ett items, hf data
items, and a string tag. The ett and hf values should be included in the relevant tableslike all the other
variables your protocol may use. The hf variables need to be placed in the structure something like
the following. Of course the names may need to be adjusted.

68

static int hf_nsg_fragnents = -1;
static int hf_nsg_fragnent = _é;ﬁﬁ . .
static int hf_nsg_fragnent_ove Iﬁegdlsgect|on

static int hf_nsg_fragnent_overlap_conflicts = -1;
static int hf_nmsg_fragnent_multiple_tails = -1;

ELRIR G feadhibll At P abriéits™ Data

static int hf_nsg_fragnent_count = -1,
static int hf_nsg_reassenbled_in = -1,
static int hf_nsg_reassenbl ed_| ength = -1;

static gint ett_nsg_fragment = -1;
static gint ett_nsg_fragnments = -1;

static const fragnment_itens nsg_frag_items = {
/* Fragnent subtrees */
&ett _msg_fragment,
&ett_msg_fragments,
/* Fragnent fields */
&hf _msg_fragments,
&hf _msg_fragment,
&hf _msg_fragment _overl ap,
&hf _msg_fragment _overlap_conflicts,
&hf _msg_fragment _nmultiple_tails,
&hf _msg_fragment _too_I| ong_fragment,
&hf _msg_fragment _error,
&hf _msg_f ragment _count,
/* Reassenbled in field */
&hf _msg_reassenbl ed_i n,
/* Reassenbled length field */
&hf _msg_reassenbl ed_| engt h,
/* Tag */
"Message fragments”

b

static hf _register_info hf[] =

{

{&hf _msg_fragnents,
{"Message fragnents", "msg.fragnments",
FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL } },
{&hf _msg_fragnent,
{"Message fragnent", "msg.fragment",
FT_FRAMENUM BASE_NONE, NULL, 0x00, NULL, HFILL } },
{&hf _msg_fragnent _overl ap,
{"Message fragnent overlap", "msg.fragment.overlap",
FT_BOOLEAN, 0, NULL, Ox00, NULL, HFILL } },
{&hf _msg_fragnent_overlap_conflicts,
{"Message fragnent overlapping with conflicting data",
"msg. fragnent. overl ap. conflicts",
FT_BOOLEAN, 0, NULL, O0x00, NULL, HFILL } },
{&f _msg_fragnent_multiple_tails,
{"Message has nultiple tail fragnments",
"msg.fragnent.multiple_tails",
FT_BOOLEAN, 0, NULL, O0x00, NULL, HFILL } },
{&hf _msg_fragnent_too_| ong_fragnment,
{"Message fragnent too |ong", "nsg.fragnent.too_| ong_fragnent",
FT_BOOLEAN, 0, NULL, Ox00, NULL, HFILL } },
{&nf _nmsg_fragnent_error,
{"Message defragnmentation error”, "msg.fragment.error",
FT_FRAMENUM BASE_NONE, NULL, 0x00, NULL, HFILL } },
{&f _nmsg_fragnent_count,
{"Message fragnent count”, "mnsg.fragment.count",
FT_UI NT32, BASE_DEC, NULL, 0x00, NULL, HFILL } 1},
{&hf _nmsg_reassenbl ed_i n,
{" Reassenbl ed in", "nsg.reassenbled.in",
FT_FRAMENUM BASE_NONE, NULL, 0x00, NULL, HFILL } },
{&hf _msg_reassenbl ed_I| engt h,
{" Reassenbl ed | ength", "msg.reassenbl ed.| ength",
FT_UI NT32, BASE_DEC, NULL, 0x00, NULL, HFILL } },

static gint *ett[] =
{

&ett _msg_fragment,
&ett_msg_fragments

69

Packet dissection

9.4.2.

These hf variables are used internally within the reassembly routines to make useful links, and to add
data to the dissection. It produces links from one packet to another - such as a partial packet having a
link to the fully reassembled packet. Likewise there are back pointers to the individual packets from
the reassembled one. The other variables are used for flagging up errors.

How to reassemble split TCP Packets

A dissector gets atvbuff_t pointer which holds the payload of a TCP packet. This payload contains
the header and data of your application layer protocol.

When dissecting an application layer protocol you cannot assume that each TCP packet contains
exactly one application layer message. One application layer message can be split into several TCP
packets.

Y ou aso cannot assume that a TCP packet contains only one application layer message and that the
message header is at the start of your TCP payload. More than one messages can be transmitted in one
TCP packet, so that a message can start at an arbitrary position.

This sounds complicated, but there is a simple solution. t cp_di ssect _pdus() does al this
tcp packet reassembling for you. This function isimplemented in epan/ di ssect or s/ packet -
tcp. h.

Example 9.18. Reassembling TCP fragments

#i f def HAVE_CONFI G H
include "config.h"
#endi f

#i ncl ude <epan/ packet. h>
#i ncl ude <epan/prefs. h>
#i ncl ude "packet-tcp.h"

#def i ne FRAME_HEADER LEN 8

/* The main dissecting routine */
static void dissect_foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{
tcp_di ssect _pdus(tvb, pinfo, tree, TRUE, FRAME HEADER LEN
get _foo_nessage_l| en, dissect_foo_nessage)

}

/* This nethod dissects fully reassenbl ed nessages */
static void dissect_foo_message(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

/* TODO. inplenent your dissecting code */
}

/* deternmine PDU | ength of protocol foo */
static guint get_foo_nessage_| en(packet_info *pinfo, tvbuff_t *tvb, int offset)

/* TODO change this to your needs */
return (guint)tvb_get_ntohl (tvb, offset+4); /* e.g. length is at offset 4 */

As you can see this is redly ssimple. Just call t cp_di ssect _pdus() in your main dissection
routine and move you message parsing code into another function. This function gets called whenever
amessage has been reassembl ed.

The parameterst vb, pi nfo andt r ee arejust handed over tot cp_di ssect _pdus() . The 4th
parameter is a flag to indicate if the data should be reassembled or not. This could be set according

70

Packet dissection

to a dissector preference as well. Parameter 5 indicates how much data has at least to be available to
be able to determine the length of the foo message. Parameter 6 is a function pointer to a method that
returns this length. It gets called when at |east the number of bytes given in the previous parameter is
available. Parameter 7 is afunction pointer to your real message dissector.

9.5. How to tap protocols

Adding a Tap interface to a protocol allowsit to do some useful things. In particular you can produce
protocol statistics from the tap interface.

A tap isbasically away of alowing other items to see whats happening as a protocol is dissected. A
tap is registered with the main program, and then called on each dissection. Some arbitrary protocol
specific datais provided with the routine that can be used.

To createatap, youfirst need toregister atap. A tap isregistered with an integer handle, and registered
with the routine register_tap. This takes a string name with which to find it again.

Example 9.19. Initialising a tap

#i ncl ude <epan/ packet. h>
#i ncl ude <epan/tap. h>

static int foo_tap = -1;
struct FooTap {
gi nt packet_type;
gint priority;
H

voi d proto_register_foo(void)

{

foo_tap = register_tap("foo");

Whilst you can program atap without protocol specific data, it isgenerally not very useful. Therefore
it's a good idea to declare a structure that can be passed through the tap. This needs to be a static
structure asit will be used after the dissection routine has returned. It's generally best to pick out some
generic parts of the protocol you are dissecting into the tap data. A packet type, a priority or a status
code maybe. The structure really needs to be included in a header file so that it can be included by
other components that want to listen in to the tap.

Once you have these defined, it's simply a case of populating the protocol specific structure and then
calling tap_queue_packet, probably asthe last part of the dissector.

Example 9.20. Calling a protocol tap

voi d dissect_foo(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

fooinfo = ep_al | oc(sizeof (struct FooTap));
f ooi nf o- >packet _type = tvb_get _guint8(tvb, 0);
fooinfo->priority = tvb_get _ntohs(tvb, 8);

tap_queue_packet (f oo_tap, pinfo, fooinfo);

This now enables those interested parties to listen in on the details of this protocol conversation.

71

Packet dissection

9.6. How to produce protocol stats

Given that you have a tap interface for the protocol, you can use this to produce some interesting
statistics (well presumably interesting!) from protocol traces.

This can be done in a separate plugin, or in the same plugin that is doing the dissection. The latter
scheme is better, as the tap and stats module typically rely on sharing protocol specific data, which
might get out of step between two different plugins.

Here is a mechanism to produce statistics from the above TAP interface.

Example 9.21. I nitialising a statsinterface

/* register all http trees */
static void register_foo_stat_trees(void) {
stats_tree_register("foo", "foo", "Fool/Packet Types",
foo_stats_tree_packet, foo_stats_tree_init, NULL);

}

G _MODULE_EXPORT const gchar version[] = "0.0";
G_MODULE_EXPORT voi d plugin_register_tap_listener(void)
{ regi ster_foo_stat_trees();

}

#endi f

Working from the bottom wup, first the plugin interfface entry point is defined,
plugin_register_tap listener(). This smply cals the initiaisation function
regi ster foo stat trees().

Thisinturn callsthe st ats_tree_regi ster () function, which takes three strings, and three
functions.

1. Thisisthetap namethat is registered.

2. An abbreviation of the stats name.

3. The name of the stats module. A '/' character can be used to make sub menus.
4. Thefunction that will called to generate the stats.

5. A function that can be called to initialise the stats data.

6. A function that will be called to clean up the stats data.

In this case we only need the first two functions, as there is nothing specific to clean up.

Example 9.22. I nitialising a stats session

static const guint8* st_str_packets = "Total Packets";

static const guint8* st_str_packet_types = "FOO Packet Types";
static int st_node_packets = -1,

static int st_node_packet_types = -1,

static void foo_stats_tree_init(stats_tree* st)

{

st _node_packets = stats_tree_create_node(st, st_str_packets, 0, TRUE);

st _node_packet _types = stats_tree_create_pivot(st, st_str_packet_types, st_node_packets);

72

Packet dissection

In this case we create a new tree node, to handle the total packets, and as a child of that we create a
pivot table to handle the stats about different packet types.

Example 9.23. Generating the stats

static int foo_stats_tree_packet(stats_tree* st, packet_info* pinfo, epan_dissect_t* edt, const voi

{
struct FooTap *pi = (struct FooTap *)p;
tick_stat_node(st, st_str_packets, 0, FALSE);
stats_tree_tick_pivot(st, st_node_packet_types,
val _to_str(pi->packet _type, nsgtypeval ues, "Unknown packet type (%)"));
return 1,

In this case the processing of the stats is quite simple. First we call the tick stat node for
the st_str packets packet node, to count packets. Then a call to stats tree tick_pivot on the
st node packet types subtree allows us to record statistics by packet type.

9.7. How to use conversations

Some info about how to use conversations in a dissector can be found in the file doc/
README. devel oper chapter 2.2.

73

Chapter 10. User Interface

10.1.

10.2.

Introduction

Wireshark can be "logically" separated into the backend (dissecting of protocols, file load/save,
capturing, ...) and the frontend (the user interface). However, there's currently no clear separation
between these two parts (no clear API definition), but this might change in the future.

The following frontends are currently maintained by the Wireshark development team:

* Wireshark, GTK 2.x based

» TShark, console based

* Wireshark, GTK 1.x based (was removed with the Wireshark 1.2.0 release)

There exist other Wireshark frontends, not developed nor maintained by the Wireshark devel opment
team:

» Packetyzer (Win32 native interface, written in Delphi and released under the GPL, see: http://
www.paglo.com/opensource/packetyzer)

* hethereal (web based frontend, not actively maintained and not finished)

This chapter is focused on the Wireshark frontend, and especially on the GTK specific things.

The GTK library

Wireshark isbased onthe GTK toolkit, see: http://www.gtk.org for details. GTK isdesigned to hidethe
details of the underlying GUI in aplatform independent way. Asthisisappreciated for amultiplatform
tool, this has some drawbacks, asit will result in a somewhat "non native" look and feel.

GTK isavailable for alot of different platforms including, but not limited to: Unix/Linux, Mac OS
X and Win32. It's the foundation of the famous GNOME desktop, so the future development of
GTK should be certain. GTK isimplemented in plain C (as is Wireshark itself), and available under
the LGPL (Lesser General Public License), being free to used by commercia and noncommercial
applications.

Thereare other similar toolkitslike Qt, wxwidgets, ..., which could also be used for Wireshark. There's
no "one and only" reason for or against any of these toolkits. However, the decision towards GTK
was made along time ago :-)

At the time this document is written there are two major GTK versions available:

10.2.1. GTK Version 1.x

Please note: After the creation of the 1.0 branch further development removed support for GTK 1.x!

GTK 1.x wasthefirst major release. Today there are 1.2.x and 1.3.x versions "in the wild", with only
very limited differencesin the API.

Advantages (compared to GTK 2.x):
» availableon alot of different platforms

 very stable asit's matured for quite awhile now

74

http://www.paglo.com/opensource/packetyzer
http://www.paglo.com/opensource/packetyzer
http://www.gtk.org

User Interface

Disadvantages:

* thelook and feel is abit old-fashioned

» not recommended for future developments (last GTK 1.x release in 2004)
GTK 1.x depends on the following libraries:

* GDK (GDK is the abstraction layer that allows GTK+ to support multiple windowing systems.
GDK providesdrawing and window system facilitieson X11, Windows, and the Linux framebuffer
device))

» GLib (A general-purpose utility library, not specific to graphical user interfaces. GLib provides
many useful data types, macros, type conversions, string utilities, file utilities, a main loop
abstraction, and so on.)

GTK 1.xisworkingonGLib 1.x (typical for Unix like systems) or 2.x (typical for Win32 like systems).

XXX: include Wireshark GTK 1 screenshot

10.2.2. GTK Version 2.x

Advantages (compared to GTK 1.x):

 nicelook and feel (compared to version 1.x)

» recommended for future developments

* stable (in productive code for years now)

Disadvantages:

* not available on al platforms (compared to version 1.x)

» more dependencies compared to 1.x, see below

GTK 2.x depends on the following libraries:

e GObject (Object library. Basisfor GTK and others)

* GLib (A general-purpose utility library, not specific to graphical user interfaces. GLib provides
many useful data types, macros, type conversions, string utilities, file utilities, a main loop

abstraction, and so on.)

» Pango (Pango is alibrary for internationalized text handling. It centers around the #PangoL ayout
object, representing a paragraph of text. Pango provides the engine for #GtkTextView, #GtkL abel,
#GtkEntry, and other widgets that display text.)

* ATK (ATK isthe Accessibility Toolkit. It provides a set of genericinterfacesallowing accessibility
technologies to interact with a graphical user interface. For example, a screen reader uses ATK to
discover the text in an interface and read it to blind users. GTK+ widgets have built-in support for
accessibility using the ATK framework.)

» GdkPixbuf (Thisisasmall library which allows you to create #GdkPixbuf ("pixel buffer") objects
from image data or image files. Use a #GdkPixbuf in combination with #Gtklmage to display
images.)

* GDK (GDK is the abstraction layer that allows GTK+ to support multiple windowing systems.
GDK providesdrawing and window system facilitieson X11, Windows, and the Linux framebuffer
device)

75

User Interface

XXX: include Wireshark GTK 2 screenshot

10.2.3. Compatibility GTK versions

The GTK library itself defines some values which makes it easy to distinguish between the versions,
e.g.. GTK_MAJOR_VERSION and GTK_MINOR_VERSION will be set to the GTK version at
compile time inside the gtkversion.h header.

10.2.4. GTK resources on the web

10.3.

10.4.

10.5.

Y ou can find several resources about GTK.

First of al, have alook at: http://www.gtk.org as this will be the first place to look at. If you want
to develop GTK related things for Wireshark, the most important place might be the GTK API
documentation at: http:/library.gnome.org/devel/gtk/stable/.

Several mailing lists are available about GTK development, see http://mail.gnome.org/mailman/
listinfo, the gtk-app-devel-list may be your friend.

As it's often done wrong: You should post a mail to *help* the developers there instead of only
complaining. Posting such athing like "l don't like your dialog, it looks ugly" won't be of much help.
Y ou might think about what you dislike and describe why you dislike it and provide a suggestion for
a better way.

GUI Reference documents

Although the GUI development of Wireshark is platform independent, the Wireshark development
team tries to follow the GNOME Human Interface Guidelines (HIG) where appropriate. This is the
case, because both GNOME and Wireshark are based on the GTK+ toolkit and the GNOME HIG is
excellently written and easy to understand.

For further reference, see the following documents:

» GNOME Human Interface Guidelines at: http://library.gnome.org/devel/hig-book/stable/

» KDE user interface related documents at: http://devel oper.kde.org/documentation/standards/kde/
style/basics/index.html

» Win32 styleguides available at: http://msdn.microsoft.com/en-ug/library/aa511258.aspx

Adding/Extending Dialogs

Thisisusually the main areafor contributing new user interface features.

XXX: add the various functions from gtk/dig_utils.h

Widget naming

It seems to be common sense to name the widgets with some descriptive trailing characters, like:
* xy_lb=gtk_label_new();

* xy_cb = gtk_checkbox_new();

» XXX: add more examples

However, this schemaisn't used at al places inside the code.

76

http://www.gtk.org
http://library.gnome.org/devel/gtk/stable/
http://mail.gnome.org/mailman/listinfo
http://mail.gnome.org/mailman/listinfo
http://library.gnome.org/devel/hig-book/stable/
http://developer.kde.org/documentation/standards/kde/style/basics/index.html
http://developer.kde.org/documentation/standards/kde/style/basics/index.html
http://msdn.microsoft.com/en-us/library/aa511258.aspx

User Interface

10.6. Common GTK programming pitfalls

There are some common pitfallsin GTK programming.

10.6.1. Usage of gtk_widget _show() /
gtk_widget _show_all()

When a GTK widget is created it will be hidden by default. In order to show it, a cal to
otk_widget_show() has to be done.

Itisn't necessary to do thisfor each and every widget created. A call to gtk_widget_show_all() on the

parent of all the widgets in question (e.g. a dialog window) can be done, so al of its child widgets
will be shown too.

77

Appendix A. This Document's License
(GPL)

Aswith the original license and documentation distributed with Wireshark, this document is covered
by the GNU General Public License (GNU GPL).

If you haven't read the GPL before, please do so. It explains all the things that you are allowed to do
with this code and documentation.

GNU GENERAL PUBLI C LI CENSE
Version 2, June 1991

Copyright (C 1989, 1991 Free Software Foundation, Inc

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permtted to copy and distribute verbatim copies
of this |icense docunment, but changing it is not allowed.

Pr eanbl e

The licenses for nost software are designed to take away your
freedomto share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedomto share and change free
software--to rmake sure the software is free for all its users. This
General Public License applies to nost of the Free Software
Foundation's software and to any other program whose authors comit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your prograns, too

When we speak of free software, we are referring to freedom not
price. Qur General Public Licenses are designed to make sure that you
have the freedomto distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free prograns; and that you know you can do these things

To protect your rights, we need to nake restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you nodify it.

For exanple, if you distribute copies of such a program whether
gratis or for a fee, you nust give the recipients all the rights that
you have. You must nake sure that they, too, receive or can get the
source code. And you nust show themthese terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this |icense which gives you | egal perm ssion to copy,
distribute and/or nodify the software

Al so, for each author's protection and ours, we want to nmake certain
that everyone understands that there is no warranty for this free

software. |If the software is nodified by someone el se and passed on, we
want its recipients to know that what they have is not the original, so
that any problenms introduced by others will not reflect on the original

aut hors' reputations.

Finally, any free programis threatened constantly by software
patents. W wish to avoid the danger that redistributors of a free
programw | | individually obtain patent |icenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent mnust be licensed for everyone's free use or not |icensed at all

The precise terns and conditions for copying, distribution and

78

This Document's License (GPL)

nodi fication foll ow.

GNU GENERAL PUBLI C LI CENSE
TERVS AND CONDI TI ONS FOR COPYI NG, DI STRI BUTI ON AND MCDI FI CATI ON

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the ternms of this General Public License. The "Progrant, bel ow,
refers to any such programor work, and a "work based on the Progrant
means either the Program or any derivative work under copyright |aw
that is to say, a work containing the Programor a portion of it,
either verbatimor with nodifications and/or translated into another
| anguage. (Hereinafter, translation is included without limtation in
the term"nodification".) Each licensee is addressed as "you"

Activities other than copying, distribution and nodification are not
covered by this License; they are outside its scope. The act of
running the Programis not restricted, and the output fromthe Program
is covered only if its contents constitute a work based on the
Program (i ndependent of havi ng been made by running the Program

Whet her that is true depends on what the Program does

1. You may copy and distribute verbatimcopies of the Programs
source code as you receive it, in any medium provided that you
conspi cuously and appropriately publish on each copy an appropriate
copyright notice and disclainer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Programa copy of this License
along with the Program

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee

2. You may nodify your copy or copies of the Programor any portion
of it, thus formng a work based on the Program and copy and
di stribute such nodifications or work under the terms of Section 1
above, provided that you also neet all of these conditions

a) You nust cause the nodified files to carry prom nent notices
stating that you changed the files and the date of any change

b) You nust cause any work that you distribute or publish, that in
whole or in part contains or is derived fromthe Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License

c) If the nodified programnnormally reads comrands interactively
when run, you nust cause it, when started running for such
interactive use in the nost ordinary way, to print or display an
announcenent including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user howto view a copy of this
Li cense. (Exception: if the Programitself is interactive but
does not normally print such an announcenent, your work based on
the Programis not required to print an announcenent.)

These requirements apply to the nodified work as a whole. |f
identifiable sections of that work are not derived fromthe Program

and can be reasonably consi dered i ndependent and separate works in
thensel ves, then this License, and its ternms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program the distribution of the whole nmust be on the terns of
this License, whose permissions for other |icensees extend to the

entire whole, and thus to each and every part regardl ess of who wote it.

Thus, it is not the intent of this section to claimrights or contest
your rights to work witten entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or

col l ective works based on the Program

79

This Document's License (GPL)

In addition, nere aggregation of another work not based on the Program
with the Program (or with a work based on the Progran) on a vol une of
a storage or distribution medi um does not bring the other work under
the scope of this License

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable formunder the terns of
Sections 1 and 2 above provided that you al so do one of the follow ng

a) Acconpany it with the conplete correspondi ng nachi ne-readabl e
source code, which nust be distributed under the terms of Sections
1 and 2 above on a medium custonmarily used for software interchange

b) Acconmpany it with a witten offer, valid for at least three
years, to give any third party, for a charge no nore than your
cost of physically perform ng source distribution, a conplete
machi ne-readabl e copy of the correspondi ng source code, to be

di stributed under the terms of Sections 1 and 2 above on a medi um
customarily used for software interchange; or

c) Acconpany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is

al l owed only for noncommercial distribution and only if you
received the programin object code or executable formw th such
an offer, in accord with Subsection b above.)

The source code for a work neans the preferred formof the work for
maki ng nodi fications to it. For an executable work, conplete source
code nmeans all the source code for all nodules it contains, plus any
associated interface definition files, plus the scripts used to
control conpilation and installation of the executable. However, as a
speci al exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form with the major conponents (conpiler, kernel, and so on) of the
operating systemon which the executabl e runs, unless that conponent
itsel f acconpani es the executable

If distribution of executable or object code is made by offering
access to copy froma designated place, then offering equival ent
access to copy the source code fromthe sane place counts as
distribution of the source code, even though third parties are not
conpell ed to copy the source along with the object code

4. You may not copy, nodify, sublicense, or distribute the Program
except as expressly provided under this License. Any attenpt
otherwi se to copy, nodify, sublicense or distribute the Programis
void, and will autonatically termi nate your rights under this License
However, parties who have received copies, or rights, fromyou under
this License will not have their licenses termnated so | ong as such
parties remain in full conpliance

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to nodify or
distribute the Programor its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
nmodi fying or distributing the Program (or any work based on the
Progran), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or nodifying
the Program or works based on it.

6. Each tine you redistribute the Program (or any work based on the
Progran), the recipient automatically receives a license fromthe
original licensor to copy, distribute or nodify the Program subject to
these ternms and conditions. You nmay not inpose any further
restrictions on the recipients' exercise of the rights granted herein
You are not responsible for enforcing conpliance by third parties to
this License

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limted to patent issues)
condi tions are inposed on you (whether by court order, agreenent or
otherw se) that contradict the conditions of this License, they do not

or,

80

This Document's License (GPL)

excuse you fromthe conditions of this License. |f you cannot
distribute so as to satisfy simultaneously your obligations under this
Li cense and any other pertinent obligations, then as a consequence you
may not distribute the Programat all. For exanple, if a patent
license would not permt royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely fromdistribution of the Program

If any portion of this section is held invalid or unenforceabl e under
any particular circunmstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other

ci rcumst ances

It is not the purpose of this section to induce you to infringe any
patents or other property right clains or to contest validity of any
such clains; this section has the sole purpose of protecting the
integrity of the free software distribution system which is

impl enented by public license practices. Mny peopl e have nmade
generous contributions to the wi de range of software distributed
through that systemin reliance on consistent application of that
system it is up to the author/donor to decide if he or she is willing
to distribute software through any other systemand a |icensee cannot

i npose that choice

This section is intended to nake thoroughly clear what is believed to
be a consequence of the rest of this License

8. If the distribution and/or use of the Programis restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limtation excluding
those countries, so that distribution is pernmitted only in or anong
countries not thus excluded. |In such case, this License incorporates
the limtation as if witten in the body of this License

9. The Free Software Foundati on may publish revised and/or new versions
of the General Public License fromtime to time. Such new versions wll
be simlar in spirit to the present version, but nay differ in detail to
address new probl enms or concerns

Each version is given a distinguishing version nunber. [If the Program

speci fies a version nunber of this License which applies to it and "any
later version", you have the option of follow ng the terns and conditions
either of that version or of any later version published by the Free

Sof tware Foundation. |[If the Program does not specify a version nunber of
this License, you may choose any version ever published by the Free Software
Foundat i on

10. If you wish to incorporate parts of the Programinto other free
progranms whose distribution conditions are different, wite to the author
to ask for perm ssion. For software which is copyrighted by the Free
Sof tware Foundation, wite to the Free Software Foundation; we sonetines
make exceptions for this. Qur decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of pronoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LI CENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM TO THE EXTENT PERM TTED BY APPLI CABLE LAW EXCEPT WHEN
OTHERW SE STATED | N WRI TI NG THE COPYRI GHT HOLDERS ANDY OR OTHER PARTI ES
PROVI DE THE PROGRAM "AS | S" W THOUT WARRANTY OF ANY KI ND, ElI THER EXPRESSED
OR I MPLI ED, I NCLUDI NG BUT NOT LIMTED TO THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE. THE ENTI RE RI SK AS
TO THE QUALI TY AND PERFORVANCE OF THE PROGRAM IS WTH YOU. SHOULD THE
PROGRAM PROVE DEFECTI VE, YOU ASSUME THE COST OF ALL NECESSARY SERVI Cl NG
REPAI R OR CORRECTI ON.

12. IN NO EVENT UNLESS REQUI RED BY APPLI CABLE LAW OR AGREED TO I N WRI TI NG
WLL ANY COPYRI GHT HOLDER, OR ANY OTHER PARTY WHO MAY MODI FY AND/ OR
REDI STRI BUTE THE PROGRAM AS PERM TTED ABOVE, BE LI ABLE TO YOU FOR DAMAGES,

81

This Document's License (GPL)

I NCLUDI NG ANY GENERAL, SPECI AL, | NCI DENTAL OR CONSEQUENTI AL DAMAGES ARI SI NG
QUT OF THE USE OR I NABI LI TY TO USE THE PROGRAM (| NCLUDI NG BUT NOT LI M TED
TO LOSS OF DATA OR DATA BEI NG RENDERED | NACCURATE OR LOSSES SUSTAI NED BY
YOQU OR THI RD PARTIES OR A FAI LURE OF THE PROGRAM TO OPERATE W TH ANY OTHER
PROGRAMS) , EVEN | F SUCH HOLDER OR OTHER PARTY HAS BEEN ADVI SED OF THE

PGSSI BI LI TY OF SUCH DAMAGES.

END OF TERVS AND CONDI Tl ONS
How to Apply These Ternms to Your New Progranms

If you devel op a new program and you want it to be of the greatest
possi bl e use to the public, the best way to achieve this is to nake it
free software which everyone can redistribute and change under these terns.

To do so, attach the following notices to the program It is safest
to attach themto the start of each source file to nost effectively
convey the exclusion of warranty; and each file should have at |east
the "copyright" line and a pointer to where the full notice is found.

<one line to give the programis name and a brief idea of what it does.>
Copyright (C <year> <nane of author>

This programis free software; you can redistribute it and/or nodify
it under the ternms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the

GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Al so add i nformati on on how to contact you by el ectronic and paper mail.

If the programis interactive, make it output a short notice like this
when it starts in an interactive node:

Gnhonovi si on version 69, Copyright (C year nanme of author

Gnonovi si on comes with ABSOLUTELY NO WARRANTY; for details type “show w .
This is free software, and you are wel come to redistribute it

under certain conditions; type "show c' for details.

The hypot hetical commands “~show w and “show c¢' shoul d show the appropriate
parts of the General Public License. O course, the conmands you use may
be cal |l ed sonething other than “show w and “show c'; they could even be
mouse-clicks or menu itens--whatever suits your program

You shoul d al so get your enployer (if you work as a progranmmer) or your
school, if any, to sign a "copyright disclainmer" for the program if
necessary. Here is a sanple; alter the nanes:

Yoyodyne, Inc., hereby disclains all copyright interest in the program
“Gnonovi sion' (which makes passes at conpilers) witten by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your programinto
proprietary prograns. |If your programis a subroutine library, you nay
consider it nore useful to permt linking proprietary applications with the
library. If this is what you want to do, use the G\U Li brary General
Public License instead of this License.

82

	Wireshark Developer's Guide
	Table of Contents
	Preface
	1. Foreword
	2. Who should read this document?
	3. Acknowledgements
	4. About this document
	5. Where to get the latest copy of this document?
	6. Providing feedback about this document

	Part I. Wireshark Build Environment
	Chapter 1. Introduction
	1.1. Introduction
	1.2. What is Wireshark?
	1.3. Platforms Wireshark runs on
	1.3.1. Unix
	1.3.2. Linux
	1.3.3. Microsoft Windows

	1.4. Development and maintenance of Wireshark
	1.4.1. Programming language(s) used
	1.4.2. Open Source Software

	1.5. Releases and distributions
	1.5.1. Binary distributions
	1.5.2. Source code distributions

	1.6. Automated Builds (Buildbot)
	1.6.1. Advantages
	1.6.2. What does the Buildbot do?

	1.7. Reporting problems and getting help
	1.7.1. Website
	1.7.2. Wiki
	1.7.3. FAQ
	1.7.4. Other sources
	1.7.5. Mailing Lists
	1.7.6. Bug database (Bugzilla)
	1.7.7. Reporting Problems
	1.7.8. Reporting Crashes on UNIX/Linux platforms
	1.7.9. Reporting Crashes on Windows platforms

	Chapter 2. Quick Setup
	2.1. UNIX: Installation
	2.2. Win32: Step-by-Step Guide
	2.2.1. Install Microsoft C compiler and Platform SDK
	2.2.2. Install Cygwin
	2.2.3. Install Python
	2.2.4. Install Subversion Client
	2.2.4.1. Subversion
	2.2.4.2. TortoiseSVN

	2.2.5. Install and Prepare Sources
	2.2.6. Prepare cmd.exe
	2.2.7. Verify installed tools
	2.2.8. Install Libraries
	2.2.9. Distclean Sources
	2.2.10. Build Wireshark
	2.2.11. Debug Environment Setup (XXX)
	2.2.12. Optional: Create User's and Developer's Guide
	2.2.13. Optional: Create a Wireshark Installer

	Chapter 3. Work with the Wireshark sources
	3.1. Introduction
	3.2. The Wireshark Subversion repository
	3.2.1. The web interface to the Subversion repository

	3.3. Obtain the Wireshark sources
	3.3.1. Anonymous Subversion access
	3.3.2. Anonymous Subversion web interface
	3.3.3. Buildbot Snapshots
	3.3.4. Released sources

	3.4. Update the Wireshark sources
	3.4.1. ... with Anonymous Subversion access
	3.4.2. ... from zip files

	3.5. Build Wireshark
	3.5.1. Unix
	3.5.2. Win32 native

	3.6. Run generated Wireshark
	3.6.1. Unix/Linux
	3.6.2. Win32 native

	3.7. Debug your generated Wireshark
	3.7.1. Unix/Linux
	3.7.2. Win32 native

	3.8. Make changes to the Wireshark sources
	3.9. Contribute your changes
	3.9.1. What is a diff file (a patch)?
	3.9.2. Generate a patch
	3.9.2.1. Using the svn command-line client
	3.9.2.2. Using the diff feature of the GUI Subversion clients
	3.9.2.3. Using the diff tool

	3.9.3. Some tips for a good patch
	3.9.4. Code Requirements
	3.9.5. Sending your patch for inclusion

	3.10. Apply a patch from someone else
	3.10.1. Using patch

	3.11. Add a new file to the Subversion repository
	3.12. Binary packaging
	3.12.1. Debian: .deb packages
	3.12.2. Red Hat: .rpm packages
	3.12.3. MAC OS X: .dmg packages
	3.12.4. Win32: NSIS .exe installer

	Chapter 4. Tool Reference
	4.1. Introduction
	4.2. Win32: Cygwin
	4.2.1. Add/Update/Remove Cygwin Packages

	4.3. GNU compiler toolchain (UNIX or Win32 Cygwin)
	4.3.1. gcc (GNU compiler collection)
	4.3.2. gdb (GNU project debugger)
	4.3.3. ddd (GNU Data Display Debugger)
	4.3.4. make (GNU Make)

	4.4. Microsoft compiler toolchain (Win32 native)
	4.4.1. Toolchain Package Alternatives
	4.4.2. Legal issues with MSVC > V6?
	4.4.3. cl.exe (C Compiler)
	4.4.4. nmake.exe (Make)
	4.4.5. link.exe (Linker)
	4.4.6. C-Runtime "Redistributable" Files
	4.4.6.1. msvcr80.dll / vcredist_x86.exe - Version 8.0 (2005)
	4.4.6.2. msvcr90.dll / vcredist_x86.exe / vcredist_x64.exe - Version 9.0 (2008)
	4.4.6.3. msvcr100.dll / vcredist_x86.exe / vcredist_x64.exe - Version 10.0 (2010)

	4.4.7. Windows (Platform) SDK
	4.4.8. HTML Help
	4.4.8.1. HTML Help Compiler (hhc.exe)
	4.4.8.2. HTML Help Build Files (htmlhelp.c / htmlhelp.lib)

	4.4.9. Debugger
	4.4.9.1. Visual Studio integrated debugger
	4.4.9.2. Debugging Tools for Windows

	4.5. bash
	4.5.1. UNIX or Win32 Cygwin: GNU bash
	4.5.2. Win32 native: -

	4.6. python
	4.6.1. UNIX or Win32 Cygwin: python
	4.6.2. Win32 native: python

	4.7. perl
	4.7.1. UNIX or Win32 Cygwin: perl
	4.7.2. Win32 native: perl

	4.8. sed
	4.8.1. UNIX or Win32 Cygwin: sed
	4.8.2. Win32 native: sed

	4.9. yacc (bison)
	4.9.1. UNIX or Win32 Cygwin: bison
	4.9.2. Win32 native: bison

	4.10. flex
	4.10.1. UNIX or Win32 Cygwin: flex
	4.10.2. Win32 native: flex

	4.11. Subversion (SVN) client (optional)
	4.11.1. UNIX or Win32 Cygwin: svn
	4.11.2. Win32 native: svn

	4.12. Subversion (SVN) GUI client (optional)
	4.12.1. UNIX or Win32 Cygwin: rapidSVN, subcommander
	4.12.2. Win32 native: TortoiseSVN

	4.13. diff (optional)
	4.13.1. UNIX or Win32 Cygwin: GNU diff
	4.13.2. Win32 native: diff

	4.14. patch (optional)
	4.14.1. UNIX or Win32 Cygwin: patch
	4.14.2. Win32 native: patch

	4.15. Win32: GNU wget (optional)
	4.16. Win32: GNU unzip (optional)
	4.17. Win32: NSIS (optional)

	Chapter 5. Library Reference
	5.1. Introduction
	5.2. Binary library formats
	5.2.1. Unix
	5.2.2. Win32: MSVC
	5.2.3. Win32: cygwin gcc

	5.3. Win32: Automated library download
	5.3.1. Initial download
	5.3.2. Update of a previous download

	5.4. GTK+ / GLib / GDK / Pango / ATK / GNU gettext / GNU libiconv
	5.4.1. Unix
	5.4.2. Win32 MSVC

	5.5. SMI (optional)
	5.5.1. Unix
	5.5.2. Win32 MSVC

	5.6. c-ares (optional)
	5.6.1. Unix
	5.6.2. Win32 MSVC

	5.7. GNU adns (optional)
	5.7.1. Unix
	5.7.2. Win32 MSVC

	5.8. zlib (optional)
	5.8.1. Unix
	5.8.2. Win32 MSVC

	5.9. libpcap/WinPcap (optional)
	5.9.1. Unix: libpcap
	5.9.2. Win32 MSVC: WinPcap

	5.10. GnuTLS (optional)
	5.10.1. Unix
	5.10.2. Win32 MSVC

	5.11. Gcrypt (optional)
	5.11.1. Unix
	5.11.2. Win32 MSVC

	5.12. Kerberos (optional)
	5.12.1. Unix
	5.12.2. Win32 MSVC

	5.13. LUA (optional)
	5.13.1. Unix
	5.13.2. Win32 MSVC

	5.14. PortAudio (optional)
	5.14.1. Unix
	5.14.2. Win32 MSVC

	5.15. GeoIP (optional)
	5.15.1. Unix
	5.15.2. Win32 MSVC

	Part II. Wireshark Development (incomplete)
	Chapter 6. How Wireshark Works
	6.1. Introduction
	6.2. Overview
	6.3. Capturing packets
	6.4. Capture Files
	6.5. Dissect packets

	Chapter 7. Introduction
	7.1. Source overview
	7.2. Coding styleguides
	7.3. The GLib library

	Chapter 8. Packet capturing
	8.1. How to add a new capture type to libpcap

	Chapter 9. Packet dissection
	9.1. How it works
	9.2. Adding a basic dissector
	9.2.1. Setting up the dissector
	9.2.2. Dissecting the details of the protocol
	9.2.3. Improving the dissection information

	9.3. How to handle transformed data
	9.4. How to reassemble split packets
	9.4.1. How to reassemble split UDP packets
	9.4.2. How to reassemble split TCP Packets

	9.5. How to tap protocols
	9.6. How to produce protocol stats
	9.7. How to use conversations

	Chapter 10. User Interface
	10.1. Introduction
	10.2. The GTK library
	10.2.1. GTK Version 1.x
	10.2.2. GTK Version 2.x
	10.2.3. Compatibility GTK versions
	10.2.4. GTK resources on the web

	10.3. GUI Reference documents
	10.4. Adding/Extending Dialogs
	10.5. Widget naming
	10.6. Common GTK programming pitfalls
	10.6.1. Usage of gtk_widget_show() / gtk_widget_show_all()

	Appendix A. This Document's License (GPL)

